50 resultados para Rajbhasha Ki Vikasyatra
Resumo:
A DNA helicase, called chloroplast DNA (ctDNA) helicase II, was purified to apparent homogeneity from pea (Pisum sativum). The enzyme contained intrinsic, single-stranded, DNA-dependent ATPase activity and an apparent molecular mass of 78 kD on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The DNA helicase was markedly stimulated by DNA substrates with fork-like replication structures. A 5′-tailed fork was more active than the 3′-tailed fork, which itself was more active than substrates without a fork. The direction of unwinding was 3′ to 5′ along the bound strand, and it failed to unwind blunt-ended duplex DNA. DNA helicase activity required only ATP or dATP hydrolysis. The enzyme also required a divalent cation (Mg2+>Mn2+>Ca2+) for its unwinding activity and was inhibited at 200 mm KCl or NaCl. This enzyme could be involved in the replication of ctDNA. The DNA major groove-intercalating ligands nogalamycin and daunorubicin were inhibitory to unwinding (Ki approximately 0.85 μm and 2.2 μm, respectively) and ATPase (Ki approximately 1.3 μm and 3.0 μm, respectively) activities of pea ctDNA helicase II, whereas ellipticine, etoposide (VP-16), and camptothecin had no effect on the enzyme activity. These ligands may be useful in further studies of the mechanisms of chloroplast helicase activities.
Resumo:
Piperonylic acid (PA) is a natural molecule bearing a methylenedioxy function that closely mimics the structure of trans-cinnamic acid. The CYP73A subfamily of plant P450s catalyzes trans-cinnamic acid 4-hydroxylation, the second step of the general phenylpropanoid pathway. We show that when incubated in vitro with yeast-expressed CYP73A1, PA behaves as a potent mechanism-based and quasi-irreversible inactivator of trans-cinnamate 4-hydroxylase. Inactivation requires NADPH, is time dependent and saturable (KI = 17 μm, kinact = 0.064 min−1), and results from the formation of a stable metabolite-P450 complex absorbing at 427 nm. The formation of this complex is reversible with substrate or other strong ligands of the enzyme. In plant microsomes PA seems to selectively inactivate the CYP73A P450 subpopulation. It does not form detectable complexes with other recombinant plant P450 enzymes. In vivo PA induces a sharp decrease in 4-coumaric acid concomitant to cinnamic acid accumulation in an elicited tobacco (Nicotiana tabacum) cell suspension. It also strongly decreases the formation of scopoletin in tobacco leaves infected with tobacco mosaic virus.
Resumo:
NAD-isocitrate dehydrogenase (NAD-IDH) from the eukaryotic microalga Chlamydomonas reinhardtii was purified to electrophoretic homogeneity by successive chromatography steps on Phenyl-Sepharose, Blue-Sepharose, diethylaminoethyl-Sephacel, and Sephacryl S-300 (all Pharmacia Biotech). The 320-kD enzyme was found to be an octamer composed of 45-kD subunits. The presence of isocitrate plus Mn2+ protected the enzyme against thermal inactivation or inhibition by specific reagents for arginine or lysine. NADH was a competitive inhibitor (Ki, 0.14 mm) and NADPH was a noncompetitive inhibitor (Ki, 0.42 mm) with respect to NAD+. Citrate and adenine nucleotides at concentrations less than 1 mm had no effect on the activity, but 10 mm citrate, ATP, or ADP had an inhibitory effect. In addition, NAD-IDH was inhibited by inorganic monovalent anions, but l-amino acids and intermediates of glycolysis and the tricarboxylic acid cycle had no significant effect. These data support the idea that NAD-IDH from photosynthetic organisms may be a key regulatory enzyme within the tricarboxylic acid cycle.
Resumo:
Because centrosomes were enriched in the bile canaliculi fraction from the chicken liver through their association with apical membranes, we developed a procedure for isolation of centrosomes from this fraction. With the use of the centrosomes, we generated centrosome-specific monoclonal antibodies. Three of the monoclonal antibodies recognized an antigen of ∼90 kDa. Cloning of its cDNA identified this antigen as a chicken homologue of outer dense fiber 2 protein (Odf2), which was initially identified as a sperm outer dense fiber-specific component. Exogenously expressed and endogenous Odf2 were shown to be concentrated at the centrosomes in a microtubule-independent manner in various types of cells at both light and electron microscopic levels. Odf2 exhibited a cell cycle-dependent pattern of localization and was preferentially associated with the mother centrioles in G0/G1-phase. Toward G1/S-phase before centrosome duplication, it became detectable in both mother and daughter centrioles. In the isolated bile canaliculi and centrosomes, Odf2, in contrast to other centrosomal components, was highly resistant to KI extraction. These findings indicate that Odf2 is a widespread KI-insoluble scaffold component of the centrosome matrix, which may be involved in the maturation event of daughter centrioles.
Resumo:
The estrogen-related receptors (ERRα, ERRβ, and ERRγ) form a family of orphan nuclear receptors that share significant amino acid identity with the estrogen receptors, but for which physiologic roles remain largely unknown. By using a peptide sensor assay, we have identified the stilbenes diethylstilbestrol (DES), tamoxifen (TAM), and 4-hydroxytamoxifen (4-OHT) as high-affinity ligands for ERRγ. In direct binding assays, 4-OHT had a Kd value of 35 nM, and both DES and TAM displaced radiolabeled 4-OHT with Ki values of 870 nM. In cell-based assays, 4-OHT binding caused a dissociation of the complex between ERRγ and the steroid receptor coactivator-1, and led to an inhibition of the constitutive transcriptional activity of ERRγ. ERRα did not bind 4-OHT, but replacing a single amino acid predicted to be in the ERRα ligand-binding pocket with the corresponding ERRγ residue allowed high-affinity 4-OHT binding. These results demonstrate the existence of high-affinity ligands for the ERR family of orphan receptors, and identify 4-OHT as a molecule that can regulate the transcriptional activity of ERRγ.
Resumo:
In Alzheimer disease (AD) the microtubule-associated protein tau is redistributed exponentially into paired helical filaments (PHFs) forming neurofibrillary tangles, which correlate with pyramidal cell destruction and dementia. Amorphous neuronal deposits and PHFs in AD are characterized by aggregation through the repeat domain and C-terminal truncation at Glu-391 by endogenous proteases. We show that a similar proteolytically stable complex can be generated in vitro following the self-aggregation of tau protein through a high-affinity binding site in the repeat domain. Once started, tau capture can be propagated by seeding the further accumulation of truncated tau in the presence of proteases. We have identified a nonneuroleptic phenothiazine previously used in man (methylene blue, MB), which reverses the proteolytic stability of protease-resistant PHFs by blocking the tau-tau binding interaction through the repeat domain. Although MB is inhibitory at a higher concentration than may be achieved clinically, the tau-tau binding assay was used to identify desmethyl derivatives of MB that have Ki values in the nanomolar range. Neuroleptic phenothiazines are inactive. Tau aggregation inhibitors do not affect the tau-tubulin interaction, which also occurs through the repeat domain. Our findings demonstrate that biologically selective pharmaceutical agents could be developed to facilitate the proteolytic degradation of tau aggregates and prevent the further propagation of tau capture in AD.
Resumo:
Here we describe the properties of CP-154,526, a potent and selective nonpeptide antagonist of corticotropin (ACTH) releasing factor (CRF) receptors. CP-154,526 binds with high affinity to CRF receptors (Ki < 10 nM) and blocks CRF-stimulated adenylate cyclase activity in membranes prepared from rat cortex and pituitary. Systemically administered CP-154,526 antagonizes the stimulatory effects of exogenous CRF on plasma ACTH, locus coeruleus neuronal firing and startle response amplitude. Potential anxiolytic activity of CP-154,526 was revealed in a fearpotentiated startle paradigm. These data are presented in the context of clinical findings, which suggest that CRF is hypersecreted in certain pathological states. We propose that a CRF antagonist such as CP-154,526 could affirm the role of CRF in certain psychiatric diseases and may be of significant value in the treatment of these disorders.
Resumo:
Lithium, one of the most effective drugs for the treatment of bipolar (manic-depressive) disorder, also has dramatic effects on morphogenesis in the early development of numerous organisms. How lithium exerts these diverse effects is unclear, but the favored hypothesis is that lithium acts through inhibition of inositol monophosphatase (IMPase). We show here that complete inhibition of IMPase has no effect on the morphogenesis of Xenopus embryos and present a different hypothesis to explain the broad action of lithium. Our results suggest that lithium acts through inhibition of glycogen synthase kinase-3 beta (GSK-3 beta), which regulates cell fate determination in diverse organisms including Dictyostelium, Drosophila, and Xenopus. Lithium potently inhibits GSK-3 beta activity (Ki = 2 mM), but is not a general inhibitor of other protein kinases. In support of this hypothesis, lithium treatment phenocopies loss of GSK-3 beta function in Xenopus and Dictyostelium. These observations help explain the effect of lithium on cell-fate determination and could provide insights into the pathogenesis and treatment of bipolar disorder.
Resumo:
Immunophilins are intracellular receptors for the immunosuppressants cyclosporin A, FK506, and rapamycin. In addition to their use in organ transplantation, these natural products have been used to investigate signaling pathways in yeast, plant, and mammalian cells. We have recently described the identification of an immunosuppressant-sensitive signaling pathway in and the purification of several immunophilins from Vicia faba plants. We now report the molecular characterization of a 15 kDa FK506- and rapamycin-binding protein from V. faba (VfFKBP15). The amino acid sequence deduced from the cDNA starts with a signal peptide of 22 hydrophobic amino acids. The core region of VfFKBP15 is most similar to yeast and mammalian FKBP13 localized in the endoplasmic reticulum (ER). In addition, VfFKBP15 has a carboxyl-terminal sequence that is ended with SSEL, a putative ER retention signal. These findings suggest that VfFKBP15 is a functional homolog of FKBP13 from other organisms. Interestingly, two distinct cDNAs corresponding to two isoforms of FKBP15 have been cloned from Arabidopsis and also identified from rice data base, suggesting that pFKBP15 (plant FKBP15) is encoded by a small gene family in plants. This adds to the diversity of plant FKBP members even with the same subcellular localization and is in contrast with the situation in mammalian and yeast systems in which only one FKBP13 gene has been found. Like the mammalian and yeast FKBP13, the recombinant VfFKBP15 protein has rotamase activity that is inhibited by both FK506 and rapamycin with a Ki value of 30 nM and 0.9 nM, respectively, illustrating that VfFKBP15 binds rapamycin in preference over FK506. The mRNA of VfFKBP15 is ubiquitously expressed in various plant tissues including leaves, stems, and roots, consistent with the ER localization of the protein. Levels of VfFKBP15 mRNA are elevated by heat shock, suggesting a possible role for this FKBP member under stress conditions.
Resumo:
Overactivation of calcium-activated neutral protease (calpain) has been implicated in the pathophysiology of several degenerative conditions, including stroke, myocardial ischemia, neuromuscular degeneration, and cataract formation. Alpha-mercaptoacrylate derivatives (exemplified by PD150606), with potent and selective inhibitory actions against calpain, have been identified. PD150606 exhibits the following characteristics: (i) Ki values for mu- and m-calpains of 0.21 microM and 0.37 microM, respectively, (ii) high specificity for calpains relative to other proteases, (iii) uncompetitive inhibition with respect to substrate, and (iv) it does not shield calpain against inactivation by the active-site inhibitor trans-(epoxysuccinyl)-L-leucyl-amido-3-methylbutane, suggesting a nonactive site action for PD150606. The recombinant calcium-binding domain from each of the large or small subunits of mu-calpain was found to interact with PD150606. In low micromolar range, PD15O6O6 inhibited calpain activity in two intact cell systems. The neuroprotective effects of this class of compound were also demonstrated by the ability of PD150606 to attenuate hypoxic/hypoglycemic injury to cerebrocortical neurons in culture and excitotoxic injury to Purkinje cells in cerebellar slices.
Resumo:
Kinetic analysis and molecular modeling have been used to map the ribonucleolytic center of angiogenin (Ang). Pyrimidine nucleotides were found to interact very weakly with Ang, consistent with the inaccessible B1 pyrimidine binding site revealed by x-ray crystallography. Ang also lacks an effective phosphate binding site on the 5' side of B1. Although the B2 site that preferentially binds purines on the 3' side of B1 is also weak, its associated phosphate subsites make substantial contributions: both 3',5'-ADP and 5'-ADP have Ki values 6-fold lower than for 5'-AMP, and adding a 3'-phosphate to the substrate CpA increases Kcat/Km by 9-fold. Thus Ang has a functional P2 site on the 3' side of B2 and a site for a second phosphate on the 5' side of B2. Modeling of an Ang-d(ApTpApA) complex suggested that Arg-5 forms part of the P2 site and that a 2'-phosphate might bind more tightly than a 3'-phosphate. Both predictions were confirmed kinetically. The subsite map obtained by this combined approach indicated that 5'-diphosphoadenosine 2'-phosphate might be a more potent inhibitor than any of the nucleotides tested thus far. Indeed, its Ki value of 150 microM is 50-fold lower than that for the best nucleotide previously reported and 400-fold lower than the Km for the best dinucleotide substrate. This compound may serve as a suitable starting point for the eventual design of tight-binding inhibitors of Ang as antiangiogenic agents for human therapy.
Resumo:
The recent demonstration of the occurrence in rat brain and other nonpancreatic tissues of carboxypeptidase A (CPA) gene transcripts without associated catalytic activity could be ascribed to the presence of a soluble endogenous protein inhibitor. This tissue carboxypeptidase inhibitor (TCI), detected by the inhibition of added bovine pancreatic CPA, was purified from rat brain. Peptides were obtained by partial proteolysis of purified TCI, a protein of approximately 30 kDa, and starting from their sequences, a full-length cDNA encoding a 223-amino acid protein containing three potential phosphorylation sites was cloned from a cDNA library. Its identity with TCI was shown by expression in Escherichia coli of a recombinant protein recognized by antibodies raised against native TCI and display characteristic CPA-inhibiting activity. TCI appears as a hardly reversible, non-competitive, and potent inhibitor of CPA1 and CPA2 (Ki approximately 3 nM) and mast-cell CPA (Ki = 16 nM) and inactive on various other proteases. This pattern of selectivity might be attributable to a limited homology of a 11-amino acid sequence with sequences within the activation segments of CPA and CPB known to interact with residues within their active sites. The widespread expression of TCI in a number of tissues (e.g., brain, lung, or digestive tract) and its apparently cytosolic localization point to a rather general functional role, e.g., in the control of cytosolic protein degradation.
Resumo:
These studies were undertaken to investigate the therapeutic mechanism of saturated solutions of KI, used to treat infectious and inflammatory diseases. The addition of 12-50 mM KI to cultured human peripheral blood mononuclear cells resulted in 319-395 mosM final solute concentration and induced interleukin (IL)-8 synthesis. Maximal IL-8 production was seen when 40 mM salt was added (375 mosM) and was equal to IL-8 induced by endotoxin or IL-1 alpha. However, there was no induction of IL-1 alpha, IL-1 beta, or tumor necrosis factor to account for the synthesis of IL-8; the effect of KI was not due to contaminating endotoxins. Hyperosmolar NaCl also induced IL-8 and increased steady-state levels of IL-8 mRNA similar to those induced by IL-1 alpha. IL-8 gene expression was elevated for 96 hr in peripheral blood mononuclear cells incubated with hyperosmolar NaCl. In human THP-1 macrophagic cells, osmotic stimulation with KI, NaI, or NaCl also induced IL-8 production. IL-1 signal transduction includes the phosphorylation of the p38 mitogen-activated protein kinase that is observed following osmotic stress. Using specific blockade of this kinase, a dose-response inhibition of hyperosmolar NaCl-induced IL-8 synthesis was observed, similar to that in cells stimulated with IL-1. Thus, these studies suggest that IL-1 and osmotic shock utilize the same mitogen-activated protein kinase for signal transduction and IL-8 synthesis.
Resumo:
VanX is a D-Ala-D-Ala dipeptidase that is essential for vancomycin resistance in Enterococcus faecium. Contrary to most proteases and peptidases, it prefers to hydrolyze the amino substrate but not the related kinetically and thermodynamically more favorable ester substrate D-Ala-D-lactate. The enzymatic activity of VanX was previously found to be inhibited by the phosphinate analogs of the proposed tetrahedral intermediate for hydrolysis of D-Ala-D-Ala. Here we report that such phosphinates are slow-binding inhibitors. D-3-[(1-Aminoethyl)phosphinyl]-D-2-methylpropionic acid I showed a time-dependent onset of inhibition of VanX and a time-dependent return to uninhibited steady-state rates upon dilution of the enzyme/inhibitor mixture. The initial inhibition constant Ki after immediate addition of VanX to phosphinate I to form the E-I complex is 1.5 microM but is then lowered by a relatively slow isomerization step to a second complex, E-I*, with a final K*i of 0.47 microM. This slow-binding inhibition reflects a Km/K*i ratio of 2900:1. The rate constant for the slow dissociation of complex E-I* is 0.24 min-1. A phosphinate analog with an ethyl group replacing what would be the side chain of the second D-alanyl residue in the normal tetrahedral adduct gives a K*i value of 90 nM. Partial proteolysis of VanX reveals two protease-sensitive loop regions that are protected by the intermediate analog phosphinate, indicating that they may be part of the VanX active site.
Resumo:
A mixed-class alcohol dehydrogenase has been characterized from avian liver. Its functional properties resemble the classical class I type enzyme in livers of humans and animals by exhibiting low Km and kcat values with alcohols (Km = 0.7 mM with ethanol) and low Ki values with 4-methylpyrazole (4 microM). These values are markedly different from corresponding parameters of class II and III enzymes. In contrast, the primary structure of this avian liver alcohol dehydrogenase reveals an overall relationship closer to class II and to some extent class III (69 and 65% residue identities, respectively) than to class I or the other classes of the human alcohol dehydrogenases (52-61%), the presence of an insertion (four positions in a segment close to position 120) as in class II but in no other class of the human enzymes, and the presence of several active site residues considered typical of the class II enzyme. Hence, the avian enzyme has mixed-class properties, being functionally similar to class I, yet structurally similar to class II, with which it also clusters in phylogenetic trees of characterized vertebrate alcohol dehydrogenases. Comparisons reveal that the class II enzyme is approximately 25% more variable than the "variable" class I enzyme, which itself is more variable than the "constant" class III enzyme. The overall extreme, and the unusual chromatographic behavior may explain why the class II enzyme has previously not been found outside mammals. The properties define a consistent pattern with apparently repeated generation of novel enzyme activities after separate gene duplications.