100 resultados para Pyruvate-ferredoxin Oxidoreductase
Resumo:
Biochemical studies have shown that the periplasmic protein disulfide oxidoreductase DsbC can isomerize aberrant disulfide bonds. Here we present the first evidence for an in vivo role of DsbC in disulfide bond isomerization. Furthermore, our data suggest that the enzymes DsbA and DsbC play distinct roles in the cell in disulfide bond formation and isomerization, respectively. We have shown that mutants in dsbC display a defect in disulfide bond formation specific for proteins with multiple disulfide bonds. The defect can be complemented by the addition of reduced dithiothreitol to the medium, suggesting that absence of DsbC results in accumulation of misoxidized proteins. Mutations in the dipZ and trxA genes have similar phenotypes. We propose that DipZ, a cytoplasmic membrane protein with a thioredoxin-like domain, and thioredoxin, the product of the trxA gene, are components of a pathway for maintaining DsbC active as a protein disulfide bond isomerase.
Resumo:
In plants, the biosynthesis of isopentenyl diphosphate, the central precursor of all isoprenoids, proceeds via two separate pathways. The cytosolic compartment harbors the mevalonate pathway, whereas the newly discovered deoxyxylulose 5-phosphate pathway, which also operates in certain eubacteria, including Escherichia coli, is localized to plastids. Only the first two steps of the plastidial pathway, which involve the condensation of pyruvate and glyceraldehyde 3-phosphate to deoxyxylulose 5-phosphate followed by intramolecular rearrangement and reduction to 2-C-methylerythritol 4-phosphate, have been established. Here we report the cloning from peppermint (Mentha × piperita) and E. coli, and expression, of a kinase that catalyzes the phosphorylation of isopentenyl monophosphate as the last step of this biosynthetic sequence to isopentenyl diphosphate. The plant gene defines an ORF of 1,218 bp that, when the proposed plastidial targeting sequence is excluded, corresponds to ≈308 aa with a mature size of ≈33 kDa. The E. coli gene (ychB), which is located at 27.2 min of the chromosomal map, consists of 852 nt, encoding a deduced enzyme of 283 aa with a size of 31 kDa. These enzymes represent a conserved class of the GHMP family of kinases, which includes galactokinase, homoserine kinase, mevalonate kinase, and phosphomevalonate kinase, with homologues in plants and several eubacteria. Besides the preferred substrate isopentenyl monophosphate, the recombinant peppermint and E. coli kinases also phosphorylate isopentenol, and, much less efficiently, dimethylallyl alcohol, but dimethylallyl monophosphate does not serve as a substrate. Incubation of secretory cells isolated from peppermint glandular trichomes with isopentenyl monophosphate resulted in the rapid production of monoterpenes and sesquiterpenes, confirming that isopentenyl monophosphate is the physiologically relevant, terminal intermediate of the deoxyxylulose 5-phosphate pathway.
Resumo:
In Escherichia coli, 1-deoxy-d-xylulose (or its 5-phosphate, DXP) is the biosynthetic precursor to isopentenyl diphosphate [Broers, S. T. J. (1994) Dissertation (Eidgenössische Technische Hochschule, Zürich)], thiamin, and pyridoxol [Himmeldirk, K., Kennedy, I. A., Hill, R. E., Sayer, B. G. & Spenser, I. D. (1996) Chem. Commun. 1187–1188]. Here we show that an open reading frame at 9 min on the chromosomal map of E. coli encodes an enzyme (deoxyxylulose-5-phosphate synthase, DXP synthase) that catalyzes a thiamin diphosphate-dependent acyloin condensation reaction between C atoms 2 and 3 of pyruvate and glyceraldehyde 3-phosphate to yield DXP. We have cloned and overexpressed the gene (dxs), and the enzyme was purified 17-fold to a specific activity of 0.85 unit/mg of protein. The reaction catalyzed by DXP synthase yielded exclusively DXP, which was characterized by 1H and 31P NMR spectroscopy. Although DXP synthase of E. coli shows sequence similarity to both transketolases and the E1 subunit of pyruvate dehydrogenase, it is a member of a distinct protein family, and putative DXP synthase sequences appear to be widespread in bacteria and plant chloroplasts.
Resumo:
Hepatocyte nuclear factor 4α (HNF4α) plays a critical role in regulating the expression of many genes essential for normal functioning of liver, gut, kidney, and pancreatic islets. A nonsense mutation (Q268X) in exon 7 of the HNF4α gene is responsible for an autosomal dominant, early-onset form of non-insulin-dependent diabetes mellitus (maturity-onset diabetes of the young; gene named MODY1). Although this mutation is predicted to delete 187 C-terminal amino acids of the HNF4α protein the molecular mechanism by which it causes diabetes is unknown. To address this, we first studied the functional properties of the MODY1 mutant protein. We show that it has lost its transcriptional transactivation activity, fails to dimerize and bind DNA, implying that the MODY1 phenotype is because of a loss of HNF4α function. The effect of loss of function on HNF4α target gene expression was investigated further in embryonic stem cells, which are amenable to genetic manipulation and can be induced to form visceral endoderm. Because the visceral endoderm shares many properties with the liver and pancreatic β-cells, including expression of genes for glucose transport and metabolism, it offers an ideal system to investigate HNF4-dependent gene regulation in glucose homeostasis. By exploiting this system we have identified several genes encoding components of the glucose-dependent insulin secretion pathway whose expression is dependent upon HNF4α. These include glucose transporter 2, and the glycolytic enzymes aldolase B and glyceraldehyde-3-phosphate dehydrogenase, and liver pyruvate kinase. In addition we have found that expression of the fatty acid binding proteins and cellular retinol binding protein also are down-regulated in the absence of HNF4α. These data provide direct evidence that HNF4α is critical for regulating glucose transport and glycolysis and in doing so is crucial for maintaining glucose homeostasis.
Resumo:
Two factors that contribute to the progression of Parkinson disease are a brain defect in mitochondrial respiration and the generation of hydrogen peroxide (H2O2) by monoamine oxidase (MAO). Here we show that the two are linked. Metabolism of the neurotransmitter dopamine, or other monoamines (benzylamine, tyramine), by intact rat brain mitochondria suppresses pyruvate- and succinate-dependent electron transport. MAO inhibitors prevent this action. Mitochondrial damage is also reversed during electron flow. A probable explanation is that MAO-generated H2O2 oxidizes glutathione to glutathione disulfide (GSSG), which undergoes thiol-disulfide interchange to form protein mixed disulfides, thereby interfering reversibly with thiol-dependent enzymatic function. In agreement with this premise, direct addition of GSSG to mitochondria resulted in similar reversible inhibition of electron transport. In addition, the monoamines induced an elevation in protein mixed disulfides within mitochondria. These observations imply that (i) heightened activity and metabolism of neurotransmitter by monoamine neurons may affect neuronal function, and (ii) apparent defects in mitochondrial respiration associated with Parkinson disease may reflect, in part, an established increase in dopamine turnover. The experimental results also target mitochondrial repair mechanisms for further investigation and may, in time, lead to newer forms of therapy.
Resumo:
The mammalian renal toxicant tetrafluoroethylcysteine (TFEC) is metabolized to a reactive intermediate that covalently modifies the lysine residues of a select group of mitochondrial proteins, forming difluorothioamidyl lysine protein adducts. Cellular damage is initiated by this process and cell death ensues. NH2-terminal sequence analysis of purified mitochondrial proteins containing difluorothioamidyl lysine adducts identified the lipoamide succinyltransferase and dihydrolipoamide dehydrogenase subunits of the α-ketoglutarate dehydrogenase complex (αKGDH), a key regulatory component of oxidative metabolism, as targets for TFEC action. Adduct formation resulted in marked inhibition of αKGDH enzymatic activity, whereas the related pyruvate dehydrogenase complex was unmodified by TFEC and its activity was not inhibited in vivo. Covalent modification of αKGDH subunits also resulted in interactions with mitochondrial chaperonin HSP60 in vivo and with HSP60 and mitochondrial HSP70 in vitro. These observations confirm the role of mammalian stress proteins in the recognition of abnormal proteins and provide supporting evidence for reactive metabolite-induced cell death by modification of critical protein targets.
Resumo:
The Dld gene product, known as dihydrolipoamide dehydrogenase or the E3 component, catalyzes the oxidation of dihydrolipoyl moieties of four mitochondrial multienzyme complexes: pyruvate dehydrogenase, α-ketoglutarate dehydrogenase, branched-chain α-ketoacid dehydrogenase, and the glycine cleavage system. Deficiency of E3 activity in humans results in various degrees of neurological dysfunction and organic acidosis caused by accumulation of branched-chain amino acids and lactic acid. In this study, we have introduced a null mutation into the murine Dld gene (Dldtm1mjp). The heterozygous animals are shown to have approximately half of wild-type activity levels for E3 and all affected multienzyme complexes but are phenotypically normal. In contrast, the Dld−/− class dies prenatally with apparent developmental delay at 7.5 days postcoitum followed by resorption by 9.5 days postcoitum. The Dld−/− embryos cease to develop at a time shortly after implantation into the uterine wall when most of the embryos have begun to gastrulate. This null phenotype provides in vivo evidence for the requirement of a mitochondrial oxidative pathway during the perigastrulation period. Furthermore, the early prenatal lethal condition of the complete deficiency state may explain the low incidence of detectable cases of E3 deficiency in humans.
Resumo:
We have proposed that reduced activity of inosine-5′-monophosphate dehydrogenase (IMPD; IMP:NAD oxidoreductase, EC 1.2.1.14), the rate-limiting enzyme for guanine nucleotide biosynthesis, in response to wild-type p53 expression, is essential for p53-dependent growth suppression. A gene transfer strategy was used to demonstrate that under physiological conditions constitutive IMPD expression prevents p53-dependent growth suppression. In these studies, expression of bax and waf1, genes implicated in p53-dependent growth suppression in response to DNA damage, remains elevated in response to p53. These findings indicate that under physiological conditions IMPD is a rate-determining factor for p53-dependent growth regulation. In addition, they suggest that the impd gene may be epistatic to bax and waf1 in growth suppression. Because of the role of IMPD in the production and balance of GTP and ATP, essential nucleotides for signal transduction, these results suggest that p53 controls cell division signals by regulating purine ribonucleotide metabolism.
Resumo:
Glutaredoxins are small heat-stable proteins that act as glutathione-dependent disulfide oxidoreductases. Two genes, designated GRX1 and GRX2, which share 40–52% identity and 61–76% similarity with glutaredoxins from bacterial and mammalian species, were identified in the yeast Saccharomyces cerevisiae. Strains deleted for both GRX1 and GRX2 were viable but lacked heat-stable oxidoreductase activity using β-hydroxyethylene disulfide as a substrate. Surprisingly, despite the high degree of homology between Grx1 and Grx2 (64% identity), the grx1 mutant was unaffected in oxidoreductase activity, whereas the grx2 mutant displayed only 20% of the wild-type activity, indicating that Grx2 accounted for the majority of this activity in vivo. Expression analysis indicated that this difference in activity did not arise as a result of differential expression of GRX1 and GRX2. In addition, a grx1 mutant was sensitive to oxidative stress induced by the superoxide anion, whereas a strain that lacked GRX2 was sensitive to hydrogen peroxide. Sensitivity to oxidative stress was not attributable to altered glutathione metabolism or cellular redox state, which did not vary between these strains. The expression of both genes was similarly elevated under various stress conditions, including oxidative, osmotic, heat, and stationary phase growth. Thus, Grx1 and Grx2 function differently in the cell, and we suggest that glutaredoxins may act as one of the primary defenses against mixed disulfides formed following oxidative damage to proteins.
Resumo:
The erythroid membrane cytoskeletal protein 4.1 is the prototypical member of a genetically and topologically complex family that is generated by combinatorial alternative splicing pathways and is localized at diverse intracellular sites including the nucleus. To explore the molecular determinants for nuclear localization, we transfected COS-7 cells with epitope-tagged versions of natural red cell protein 4.1 (4.1R) isoforms as well as mutagenized and truncated derivatives. Two distant topological sorting signals were required for efficient nuclear import of the 4.1R80 isoform: a basic peptide, KKKRER, encoded by alternative exon 16 and acting as a weak core nuclear localization signal (4.1R NLS), and an acidic peptide, EED, encoded by alternative exon 5. 4.1R80 isoforms lacking either of these two exons showed decreased nuclear import. Fusion of various 4.1R80 constructs to the cytoplasmic reporter protein pyruvate kinase confirmed a requirement for both motifs for full NLS function. 4.1R80 was efficiently imported in the nuclei of digitonin-permeabilized COS-7 cells in the presence of recombinant Rch1 (human importin α2), importin β, and GTPase Ran. Quantitative analysis of protein–protein interactions using a resonant mirror detection technique showed that 4.1R80 bound to Rch1 in vitro with high affinity (KD = 30 nM). The affinity decreased at least 7- and 20-fold, respectively, if the EED motif in exon 5 or if 4.1R NLS in exon 16 was lacking or mutated, confirming that both motifs were required for efficient importin-mediated nuclear import of 4.1R80.
Resumo:
Coiled bodies are discrete nuclear organelles often identified by the marker protein p80-coilin. Because coilin is not detected in the cytoplasm by immunofluorescence and Western blotting, it has been considered an exclusively nuclear protein. In the Xenopus germinal vesicle (GV), most coilin actually resides in the nucleoplasm, although it is highly concentrated in 50–100 coiled bodies. When affinity-purified anti-coilin antibodies were injected into the cytoplasm of oocytes, they could be detected in coiled bodies within 2–3 h. Coiled bodies were intensely labeled after 18 h, whereas other nuclear organelles remained negative. Because the nuclear envelope does not allow passive diffusion of immunoglobulins, this observation suggests that anti-coilin antibodies are imported into the nucleus as an antigen–antibody complex with coilin. Newly synthesized coilin is not required, because cycloheximide had no effect on nuclear import and subsequent targeting of the antibodies. Additional experiments with myc-tagged coilin and myc-tagged pyruvate kinase confirmed that coilin is a shuttling protein. The shuttling of Nopp140, NO38/B23, and nucleolin was easily demonstrated by the targeting of their respective antibodies to the nucleoli, whereas anti-SC35 did not enter the germinal vesicle. We suggest that coilin, perhaps in association with Nopp140, may function as part of a transport system between the cytoplasm and the coiled bodies.
Resumo:
Mammalian electron transfer flavoproteins (ETF) are heterodimers containing a single equivalent of flavin adenine dinucleotide (FAD). They function as electron shuttles between primary flavoprotein dehydrogenases involved in mitochondrial fatty acid and amino acid catabolism and the membrane-bound electron transfer flavoprotein ubiquinone oxidoreductase. The structure of human ETF solved to 2.1-Å resolution reveals that the ETF molecule is comprised of three distinct domains: two domains are contributed by the α subunit and the third domain is made up entirely by the β subunit. The N-terminal portion of the α subunit and the majority of the β subunit have identical polypeptide folds, in the absence of any sequence homology. FAD lies in a cleft between the two subunits, with most of the FAD molecule residing in the C-terminal portion of the α subunit. Alignment of all the known sequences for the ETF α subunits together with the putative FixB gene product shows that the residues directly involved in FAD binding are conserved. A hydrogen bond is formed between the N5 of the FAD isoalloxazine ring and the hydroxyl side chain of αT266, suggesting why the pathogenic mutation, αT266M, affects ETF activity in patients with glutaric acidemia type II. Hydrogen bonds between the 4′-hydroxyl of the ribityl chain of FAD and N1 of the isoalloxazine ring, and between αH286 and the C2-carbonyl oxygen of the isoalloxazine ring, may play a role in the stabilization of the anionic semiquinone. With the known structure of medium chain acyl-CoA dehydrogenase, we hypothesize a possible structure for docking the two proteins.
Resumo:
Thioredoxin 1 is a major thiol-disulfide oxidoreductase in the cytoplasm of Escherichia coli. One of its functions is presumed to be the reduction of the disulfide bond in the active site of the essential enzyme ribonucleotide reductase. Thioredoxin 1 is kept in a reduced state by thioredoxin reductase. In a thioredoxin reductase null mutant however, most of thioredoxin 1 is in the oxidized form; recent reports have suggested that this oxidized form might promote disulfide bond formation in vivo. In the Escherichia coli periplasm, the protein disulfide isomerase DsbC is maintained in the reduced and active state by the membrane protein DsbD. In a dsbD null mutant, DsbC accumulates in the oxidized form. This oxidized form is then able to promote disulfide bond formation. In both these cases, the inversion of the function of these thiol oxidoreductases appears to be due to an altered redox balance of the environment in which they find themselves. Here, we show that thioredoxin 1 attached to the alkaline phosphatase signal sequence can be exported into the E. coli periplasm. In this new environment for thioredoxin 1, we show that thioredoxin 1 can promote disulfide bond formation and, therefore, partially complement a dsbA strain defective for disulfide bond formation. Thus, we provide evidence that by changing the location of thioredoxin 1 from cytoplasm to periplasm, we change its function from a reductant to an oxidant. We conclude that the in vivo redox function of thioredoxin 1 depends on the redox environment in which it is localized.
Resumo:
Biosynthesis of aromatic amino acids in plants, many bacteria, and microbes relies on the enzyme 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, a prime target for drugs and herbicides. We have identified the interaction of EPSP synthase with one of its two substrates (shikimate 3-phosphate) and with the widely used herbicide glyphosate by x-ray crystallography. The two-domain enzyme closes on ligand binding, thereby forming the active site in the interdomain cleft. Glyphosate appears to occupy the binding site of the second substrate of EPSP synthase (phosphoenol pyruvate), mimicking an intermediate state of the ternary enzyme⋅substrates complex. The elucidation of the active site of EPSP synthase and especially of the binding pattern of glyphosate provides a valuable roadmap for engineering new herbicides and herbicide-resistant crops, as well as new antibiotic and antiparasitic drugs.
Resumo:
A novel protein superfamily with over 600 members was discovered by iterative profile searches and analyzed with powerful bioinformatics and information visualization methods. Evidence exists that these proteins generate a radical species by reductive cleavage of S-adenosylmethionine (SAM) through an unusual Fe-S center. The superfamily (named here Radical SAM) provides evidence that radical-based catalysis is important in a number of previously well- studied but unresolved biochemical pathways and reflects an ancient conserved mechanistic approach to difficult chemistries. Radical SAM proteins catalyze diverse reactions, including unusual methylations, isomerization, sulfur insertion, ring formation, anaerobic oxidation and protein radical formation. They function in DNA precursor, vitamin, cofactor, antibiotic and herbicide biosynthesis and in biodegradation pathways. One eukaryotic member is interferon-inducible and is considered a candidate drug target for osteoporosis; another is observed to bind the neuronal Cdk5 activator protein. Five defining members not previously recognized as homologs are lysine 2,3-aminomutase, biotin synthase, lipoic acid synthase and the activating enzymes for pyruvate formate-lyase and anaerobic ribonucleotide reductase. Two functional predictions for unknown proteins are made based on integrating other data types such as motif, domain, operon and biochemical pathway into an organized view of similarity relationships.