53 resultados para Protein Isoforms


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The espins are actin-binding and -bundling proteins localized to parallel actin bundles. The 837-amino-acid “espin” of Sertoli cell–spermatid junctions (ectoplasmic specializations) and the 253-amino-acid “small espin” of brush border microvilli are splice isoforms that share a C-terminal 116-amino-acid actin-bundling module but contain different N termini. To investigate the roles of espin and its extended N terminus, we examined the actin-binding and -bundling properties of espin constructs and the stoichiometry and developmental accumulation of espin within the ectoplasmic specialization. An espin construct bound to F-actin with an approximately threefold higher affinity (Kd = ∼70 nM) than small espin and was ∼2.5 times more efficient at forming bundles. The increased affinity appeared to be due to an additional actin-binding site in the N terminus of espin. This additional actin-binding site bound to F-actin with a Kd of ∼1 μM, decorated actin stress fiber-like structures in transfected cells, and was mapped to a peptide between the two proline-rich peptides in the N terminus of espin. Espin was detected at ∼4–5 × 106 copies per ectoplasmic specialization, or ∼1 espin per 20 actin monomers and accumulated there coincident with the formation of parallel actin bundles during spermiogenesis. These results suggest that espin is a major actin-bundling protein of the Sertoli cell–spermatid ectoplasmic specialization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inwardly rectifying potassium (K+) channels gated by G proteins (Kir3.x family) are widely distributed in neuronal, atrial, and endocrine tissues and play key roles in generating late inhibitory postsynaptic potentials, slowing the heart rate and modulating hormone release. They are directly activated by Gβγ subunits released from G protein heterotrimers of the Gi/o family upon appropriate receptor stimulation. Here we examine the role of isoforms of pertussis toxin (PTx)-sensitive G protein α subunits (Giα1–3 and GoαA) in mediating coupling between various receptor systems (A1, α2A, D2S, M4, GABAB1a+2, and GABAB1b+2) and the cloned counterpart of the neuronal channel (Kir3.1+3.2A). The expression of mutant PTx-resistant Gi/oα subunits in PTx-treated HEK293 cells stably expressing Kir3.1+3.2A allows us to selectively investigate that coupling. We find that, for those receptors (A1, α2A) known to interact with all isoforms, Giα1–3 and GoαA can all support a significant degree of coupling to Kir3.1+3.2A. The M4 receptor appears to preferentially couple to Giα2 while another group of receptors (D2S, GABAB1a+2, GABAB1b+2) activates the channel predominantly through Gβγ liberated from GoA heterotrimers. Interestingly, we have also found a distinct difference in G protein coupling between the two splice variants of GABAB1. Our data reveal selective pathways of receptor activation through different Gi/oα isoforms for stimulation of the G protein-gated inwardly rectifying K+ channel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

γ-Aminobutyric acid type A receptors (GABAARs) are ligand-gated chloride channels that exist in numerous distinct subunit combinations. At postsynaptic membrane specializations, different GABAAR isoforms colocalize with the tubulin-binding protein gephyrin. However, direct interactions of GABAAR subunits with gephyrin have not been reported. Recently, the GABAAR-associated protein GABARAP was found to bind to the γ2 subunit of GABAARs. Here we show that GABARAP interacts with gephyrin in both biochemical assays and transfected cells. Confocal analysis of neurons derived from wild-type and gephyrin-knockout mice revealed that GABARAP is highly enriched in intracellular compartments, but not at gephyrin-positive postsynaptic membrane specializations. Our data indicate that GABARAP–gephyrin interactions are not important for postsynaptic GABAAR anchoring but may be implicated in receptor sorting and/or targeting mechanisms. Consistent with this idea, a close homolog of GABARAP, p16, has been found to function as a late-acting intra-Golgi transport factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To better understand the structure and function of Z lines, we used sarcomeric isoforms of α-actinin and γ-filamin to screen a human skeletal muscle cDNA library for interacting proteins by using the yeast two-hybrid system. Here we describe myozenin (MYOZ), an α-actinin- and γ-filamin-binding Z line protein expressed predominantly in skeletal muscle. Myozenin is predicted to be a 32-kDa, globular protein with a central glycine-rich domain flanked by α-helical regions with no strong homologies to any known genes. The MYOZ gene has six exons and maps to human chromosome 10q22.1-q22.2. Northern blot analysis demonstrated that this transcript is expressed primarily in skeletal muscle with significantly lower levels of expression in several other tissues. Antimyozenin antisera stain skeletal muscle in a sarcomeric pattern indistinguishable from that seen by using antibodies for α-actinin, and immunogold electron microscopy confirms localization specifically to Z lines. Thus, myozenin is a skeletal muscle Z line protein that may be a good candidate gene for limb-girdle muscular dystrophy or other neuromuscular disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two classes of human G protein-coupled receptors, cysteinyl leukotriene 1 (CysLT1) and CysLT2 receptors, recently have been characterized and cloned. Because the CysLT1 receptor blockers are effective in treating human bronchial asthma and the mouse is often used to model human diseases, we isolated the mouse CysLT1 receptor from a mouse lung cDNA library and found two isoforms. A short isoform cDNA containing two exons encodes a polypeptide of 339 aa with 87.3% amino acid identity to the human CysLT1 receptor. A long isoform has two additional exons and an in-frame upstream start codon resulting in a 13-aa extension at the N terminus. Northern blot analysis revealed that the mouse CysLT1 receptor mRNA is expressed in lung and skin; and reverse transcription–PCR showed wide expression of the long isoform with the strongest presence in lung and skin. The gene for the mouse CysLT1 receptor was mapped to band XD. Leukotriene (LT) D4 induced intracellular calcium mobilization in Chinese hamster ovary cells stably expressing either isoform of the mouse CysLT1 receptor cDNA. This agonist effect of LTD4 was fully inhibited by the CysLT1 receptor antagonist, MK-571. Microsomal membranes from each transformant showed a single class of binding sites for [3H]LTD4; and the binding was blocked by unlabeled LTs, with the rank order of affinities being LTD4 >> LTE4 = LTC4 >> LTB4. Thus, the dominant mouse isoform with the N-terminal amino acid extension encoded by an additional exon has the same ligand response profile as the spliced form and the human receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Crithidia fasciculata RNH1 gene encodes an RNase H, an enzyme that specifically degrades the RNA strand of RNA–DNA hybrids. The RNH1 gene is contained within an open reading frame (ORF) predicted to encode a protein of 53.7 kDa. Previous work has shown that RNH1 expresses two proteins: a 38 kDa protein and a 45 kDa protein which is enriched in kinetoplast extracts. Epitope tagging of the C-terminus of the RNH1 gene results in localization of the protein to both the kinetoplast and the nucleus. Translation of the ORF beginning at the second in-frame methionine codon predicts a protein of 38 kDa. Insertion of two tandem stop codons between the first ATG codon and the second in-frame ATG codon of the ORF results in expression of only the 38 kDa protein and the protein localizes specifically to the nucleus. Mutation of the second methionine codon to a valine codon prevents expression of the 38 kDa protein and results in exclusive production of the 45 kDa protein and localization of the protein only in the kinetoplast. These results suggest that the kinetoplast enzyme results from processing of the full-length 53.7 kDa protein. The nuclear enzyme appears to result from translation initiation at the second in-frame ATG codon. This is the first example in trypanosomatids of the production of nuclear and mitochondrial isoforms of a protein from a single gene and is the only eukaryotic gene in the RNase HI gene family shown to encode a mitochondrial RNase H.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How tau mutations lead to neurodegeneration is unknown but may be related to altered microtubule binding properties of mutant tau protein. The tendency for the mutations to cluster around the microtubule-binding domain of tau or to alter the ratios of those splice isoforms that affect binding supports the view that the tau/microtubule interaction is critical and finely regulated. In cells transfected with both mutant and wild-type tau isoforms fused to either yellow fluorescent protein or cyan fluorescent protein we can observe tau fusion proteins that differ by a single amino acid or by the inclusion or exclusion of exon 10. With coexpression of mutant and wild-type tau, the mutant isoform appears diffuse throughout the cytoplasm; however, when mutant tau is expressed alone, it appears mostly bound to the microtubules. Dual imaging of the three- and four-repeat tau isoforms indicated that the expression of four-repeat tau displaced three-repeat tau from the microtubules. These results suggest that altered kinetic competition among the isoforms for microtubule binding could be a disease precipitant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structures of two isoforms of Bcl-2 that differ by two amino acids have been determined by NMR spectroscopy. Because wild-type Bcl-2 behaved poorly in solution, the structures were determined by using Bcl-2/Bcl-xL chimeras in which part of the putative unstructured loop of Bcl-2 was replaced with a shortened loop from Bcl-xL. These chimeric proteins have a low pI compared with the wild-type protein and are soluble. The structures of the two Bcl-2 isoforms consist of 6 α-helices with a hydrophobic groove on the surface similar to that observed for the homologous protein, Bcl-xL. Comparison of the Bcl-2 structures to that of Bcl-xL shows that although the overall fold is the same, there are differences in the structural topology and electrostatic potential of the binding groove. Although the structures of the two isoforms of Bcl-2 are virtually identical, differences were observed in the ability of the proteins to bind to a 25-residue peptide from the proapoptotic Bad protein and a 16-residue peptide from the proapoptotic Bak protein. These results suggest that there are subtle differences in the hydrophobic binding groove in Bcl-2 that may translate into differences in antiapoptotic activity for the two isoforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NADP-malic enzyme (NADP-ME, EC 1.1.1.40), a key enzyme in C4 photosynthesis, provides CO2 to the bundle-sheath chloroplasts, where it is fixed by ribulose-1,5-bisphosphate carboxylase/oxygenase. We characterized the isoform pattern of NADP-ME in different photosynthetic species of Flaveria (C3, C3-C4 intermediate, C4-like, C4) based on sucrose density gradient centrifugation and isoelectric focusing of the native protein, western-blot analysis of the denatured protein, and in situ immunolocalization with antibody against the 62-kD C4 isoform of maize. A 72-kD isoform, present to varying degrees in all species examined, is predominant in leaves of C3 Flaveria spp. and is also present in stem and root tissue. By immunolabeling, NADP-ME was found to be mostly localized in the upper palisade mesophyll chloroplasts of C3 photosynthetic tissue. Two other isoforms of the enzyme, with molecular masses of 62 and 64 kD, occur in leaves of certain intermediates having C4 cycle activity. The 62-kD isoform, which is the predominant highly active form in the C4 species, is localized in bundle-sheath chloroplasts. Among Flaveria spp. there is a 72-kD constitutive form, a 64-kD form that may have appeared during evolution of C4 metabolism, and a 62-kD form that is necessary for the complete functioning of C4 photosynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Higher plants express several isoforms of vacuolar and cell wall invertases (CWI), some of which are inactivated by inhibitory proteins at certain stages of plant development. We have purified an apoplasmic inhibitor (INH) of tobacco (Nicotiana tabacum) CWI to homogeneity. Based on sequences from tryptic fragments, we have isolated a full-length INH-encoding cDNA clone (Nt-inh1) via a reverse transcriptase-polymerase chain reaction. Southern-blot analysis revealed that INH is encoded by a single- or low-copy gene. Comparison with expressed sequence tag clones from Arabidopsis thaliana and Citrus unshiu indicated the presence of Nt-inh1-related proteins in other plants. The recombinant Nt-inh1-encoded protein inhibits CWI from tobacco and Chenopodium rubrum suspension-cultured cells and vacuolar invertase from tomato (Lycopersicon esculentum) fruit, whereas yeast invertase is not affected. However, only in the homologous system is the inhibition modulated by the concentration of Suc as previously shown for INH isolated from tobacco cells. Highly specific binding of INH to CWI could be shown by affinity chromatography of a total cell wall protein fraction on immobilized recombinant Nt-inh1 protein. RNA-blot analysis of relative transcript ratios for Nt-inh1 and CWI in different parts of adult tobacco plants revealed that the expression of both proteins is not always coordinate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously reported that KIF3A and KIF3B form a heterodimer that functions as a microtubule-based fast anterograde translocator of membranous organelles. We have also shown that this KIF3A/3B forms a complex with other associated polypeptides, named kinesin superfamily-associated protein 3 (KAP3). In the present study, we purified KAP3 protein by immunoprecipitation using anti-KIF3B antibody from mouse testis. Microsequencing was carried out, and we cloned the full-length KAP3 cDNA from a mouse brain cDNA library. Two isoforms of KAP3 exist [KAP3A (793 aa) and KAP3B (772 aa)], generated by alternative splicing in the carboxyl terminus region. Their amino acid sequences have no homology with those of any other known proteins, and prediction of their secondary structure indicated that almost the entire KAP3 molecule is alpha-helical. We produced recombinant KAP3 and KIF3A/3B using a baculovirus-Sf9 expression system. A reconstruction study in Sf9 cells revealed that KAP3 is a globular protein that binds to the tail domain of KIF3A/3B. The immunolocalization pattern of KAP3 was similar to that of KIF3A/3B in nerve cells. In addition, we found that KAP3 does not affect the motor activity of KIF3A/3B. KAP3 was associated with a membrane-bound form of KIF3A/3B in a fractional immunoprecipitation experiment, and since the KIF3 complex was found to bind to membranous organelles in an EM study, KAP3 may regulate membrane binding of the KIF3 complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcriptional repression represents an important component in the regulation of cell differentiation and oncogenesis mediated by nuclear hormone receptors. Hormones act to relieve repression, thus allowing receptors to function as transcriptional activators. The transcriptional corepressor SMRT was identified as a silencing mediator for retinoid and thyroid hormone receptors. SMRT is highly related to another corepressor, N-CoR, suggesting the existence of a new family of receptor-interacting proteins. We demonstrate that SMRT is a ubiquitous nuclear protein that interacts with unliganded receptor heterodimers in mammalian cells. Furthermore, expression of the receptor-interacting domain of SMRT acts as an antirepressor, suggesting the potential importance of splicing variants as modulators of thyroid hormone and retinoic acid signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclooxygenases (COXs) 1 and 2 are 72-kDa, intralumenal residents of the endoplasmic reticulum (ER) and nuclear envelope, where they catalyze the rate-limiting steps in the conversion of arachidonate to the physiologically dynamic prostanoids. Recent studies, including the generation of knockout mice, show COX-1 and COX-2 to have biologically distinct roles within cells and organisms. Also apparent is that arachidonate substrate is selectably metabolized by COX-2 after mitogen stimulation in many cells that contain both isoforms. Because COX-1 and COX-2 are highly conserved in all residues needed for catalysis and in their purified forms have almost identical kinetic properties, we have searched for COX-interacting ER proteins that might mediate these unique isoenzymic properties. Using COXs as bait in the yeast two-hybrid system, we identified autoimmunity- and apoptosis-associated nucleobindin (Nuc) as a protein that specifically interacts with both isoenzymes. COX-Nuc binding was substantiated by immunoprecipitation experiments, which showed that COX-1 and, to a lesser extent, COX-2 form complexes with Nuc in vitro. When overexpressed in COS-1 cells, Nuc was found to be extracellularly released. However, when Nuc was co-overexpressed with COX-1 or COX-2, its release was reduced by >80%. This finding suggests that COX isoenzymes participate in the retention of Nuc within the lumen of the ER, where COX may regulate the release of Nuc from the cell. It also identifies Nuc as a potential regulator of COXs through this interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural pathways within the hippocampus undergo use-dependent changes in synaptic efficacy, and these changes are mediated by a number of signaling mechanisms, including cAMP-dependent protein kinase (PKA). The PKA holoenzyme is composed of regulatory and catalytic (C) subunits, both of which exist as multiple isoforms. There are two C subunit genes in mice, Calpha and Cbeta, and the Cbeta gene gives rise to several splice variants that are specifically expressed in discrete regions of the brain. We have used homologous recombination in embryonic stem cells to introduce an inactivating mutation into the mouse Cbeta gene, specifically targeting the Cbeta1-subunit isoform. Homozygous mutants showed normal viability and no obvious pathological defects, despite a complete lack of Cbeta1. The mice were analyzed in electrophysiological paradigms to test the role of this isoform in long-term modulation of synaptic transmission in the Schaffer collateral-CA1 pathway of the hippocampus. A high-frequency stimulus produced potentiation in both wild-type and Cbeta1-/- mice, but the mutants were unable to maintain the potentiated response, resulting in a late phase of long-term potentiation that was only 30% of controls. Paired pulse facilitation was unaffected in the mutant mice. Low-frequency stimulation produced long-term depression and depotentiation in wild-type mice but failed to produce lasting synaptic depression in the Cbeta1 -/- mutants. These data provide direct genetic evidence that PKA, and more specifically the Cbeta1 isoform, is required for long-term depression and depotentiation, as well as the late phase of long-term potentiation in the Schaffer collateral-CA1 pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

WT1 encodes a zinc-finger protein, expressed as distinct isoforms, that is inactivated in a subset of Wilms tumors. Both constitutional and somatic mutations disrupting the DNA-binding domain of WT1 result in a potentially dominant-negative phenotype. In generating inducible cell lines expressing wild-type isoforms of WT1 and WT1 mutants, we observed dramatic differences in the subnuclear localization of the induced proteins. The WT1 isoform that binds with high affinity to a defined DNA target, WT1(-KTS), was diffusely localized throughout the nucleus. In contrast, expression of an alternative splicing variant with reduced DNA binding affinity, WT1 (+KTS), or WT1 mutants with a disrupted zinc-finger domain resulted in a speckled pattern of expression within the nucleus. Although similar in appearance, the localization of WT1 variants to subnuclear clusters was clearly distinct from that of the essential splicing factor SC35, suggesting that WT1 is not directly involved in pre-mRNA splicing. Localization to subnuclear clusters required the N terminus of WT1, and coexpression of a truncated WT1 mutant and wild-type WT1(-KTS) resulted in their physical association, the redistribution of WT1(-KTS) from a diffuse to a speckled pattern, and the inhibition of its transactivational activity. These observations suggest that different WT1 isoforms and WT1 mutants have distinct subnuclear compartments. Dominant-negative WT1 proteins physically associate with wild-type WT1 in vivo and may result in its sequestration within subnuclear structures.