35 resultados para Protective clothing.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recombinant Mycobacterium bovis bacillus Calmette-Guérin (BCG) vector-based vaccine that secretes the V3 principal neutralizing epitope of human immunodeficiency virus (HIV) could induce immune response to the epitope and prevent the viral infection. By using the Japanese consensus sequence of HIV-1, we successfully constructed chimeric protein secretion vectors by selecting an appropriate insertion site of a carrier protein and established the principal neutralizing determinant (PND)-peptide secretion system in BCG. The recombinant BCG (rBCG)-inoculated guinea pigs were initially screened by delayed-type hypersensitivity (DTH) skin reactions to the PND peptide, followed by passive transfer of the DTH by the systemic route. Further, immunization of mice with the rBCG resulted in induction of cytotoxic T lymphocytes. The guinea pig immune antisera showed elevated titers to the PND peptide and neutralized HIVMN, and administration of serum IgG from the vaccinated guinea pigs was effective in completely blocking the HIV infection in thymus/liver transplanted severe combined immunodeficiency (SCID)/hu or SCID/PBL mice. In addition, the immune serum IgG was shown to neutralize primary field isolates of HIV that match the neutralizing sequence motif by a peripheral blood mononuclear cell-based virus neutralization assay. The data support the idea that the antigen-secreting rBCG system can be used as a tool for development of HIV vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an approximately 3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with > 85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helicobacter pylori is an important etiologic agent of gastroduodenal disease. In common with other organisms, H. pylori bacteria express heat shock proteins that share homologies with the GroES-GroEL class of proteins from Escherichia coli. We have assessed the heat shock proteins of H. pylori as potential protective antigens in a murine model of gastric Helicobacter infection. Orogastric immunization of mice with recombinant H. pylori GroES- and GroEL-like proteins protected 80% (n = 20) and 70% (n = 10) of animals, respectively, from a challenge dose of 10(4) Helicobacter felis bacteria (compared to control mice, P = 0.0042 and P = 0.0904, respectively). All mice (n = 19) that were immunized with a dual antigen preparation, consisting of H. pylori GroES-like protein and the B subunit of H. pylori urease, were protected against infection. This represented a level of protection equivalent to that provided by a sonicated Helicobacter extract (P = 0.955). Antibodies directed against the recombinant H. pylori antigens were predominantly of the IgG1 class, suggesting that a type 2 T-helper cell response was involved in protection. This work reports a protein belonging to the GroES class of heat shock proteins that was shown to induce protective immunity. In conclusion, GroES-like and urease B-subunit proteins have been identified as potential components of a future H. pylori subunit vaccine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Listeria monocytogenes (LM) is a Gram-positive bacterium that is able to enter host cells, escape from the endocytic vesicle, multiply within the cytoplasm, and spread directly from cell to cell without encountering the extracellular milieu. The ability of LM to gain access to the host cell cytosol allows proteins secreted by the bacterium to efficiently enter the pathway for major histocompatibility complex class I antigen processing and presentation. We have established a genetic system for expression and secretion of foreign antigens by recombinant strains, based on stable site-specific integration of expression cassettes into the LM genome. The ability of LM recombinants to induce protective immunity against a heterologous pathogen was demonstrated with lymphocytic choriomeningitis virus (LCMV). LM strains expressing the entire LCMV nucleoprotein or an H-2Ld-restricted nucleoprotein epitope (aa 118-126) were constructed. Immunization of mice with LM vaccine strains conferred protection against challenge with virulent strains of LCMV that otherwise establish chronic infection in naive adult mice. In vivo depletion of CD8+ T cells from vaccinated mice abrogated their ability to clear viral infection, showing that protective anti-viral immunity was due to CD8+ T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunization of rodents and humans with irradiation-attenuated malaria sporozoites confers preerythrocytic stage-specific protective immunity to challenge infection. This immunity is directed against intrahepatic parasites and involves T cells and interferon gamma, which prevent development of exoerythrocytic stages and subsequent blood infection. The present study was undertaken to determine how protective immunity is achieved after immunization of rodent hosts with irradiated Plasmodium berghei sporozoites. We present evidence that irradiated parasites persist in hepatocytes of rats and mice for up to 6 months after immunization. A relationship between the persistence of parasites and the maintenance of protective immunity was observed. Protective immunity was abrogated in irradiated-sporozoite-immunized rats following the application of chemotherapy to remove preexisting liver parasites. Additionally, protective immunity against sporozoite challenge was established in rats vaccinated with early and late hepatic stages of irradiated parasites. These results show that irradiation-attenuated sporozoites produce persistent intrahepatic stages in vivo necessary for the induction and maintenance of protective immunity.