70 resultados para Produtive reorganization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antisense oligonucleotides are powerful tools for the in vivo regulation of gene expression. We have characterized the intracellular distribution of fluorescently tagged phosphorothioate oligodeoxynucleotides (PS-ONs) at high resolution under conditions in which PS-ONs have the potential to display antisense activity. Under these conditions PS-ONs predominantly localized to the cell nucleus where they accumulated in 20–30 bright spherical foci designated phosphorothioate bodies (PS bodies), which were set against a diffuse nucleoplasmic population excluding nucleoli. PS bodies are nuclear structures that formed in cells after PS-ON delivery by transfection agents or microinjection but were observed irrespectively of antisense activity or sequence. Ultrastructurally, PS bodies corresponded to electron-dense structures of 150–300 nm diameter and resembled nuclear bodies that were found with lower frequency in cells lacking PS-ONs. The environment of a living cell was required for the de novo formation of PS bodies, which occurred within minutes after the introduction of PS-ONs. PS bodies were stable entities that underwent noticeable reorganization only during mitosis. Upon exit from mitosis, PS bodies were assembled de novo from diffuse PS-ON pools in the daughter nuclei. In situ fractionation demonstrated an association of PS-ONs with the nuclear matrix. Taken together, our data provide evidence for the formation of a nuclear body in cells after introduction of phosphorothioate oligodeoxynucleotides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thrombospondin-1 (TSP) induces endothelial cell (EC) actin reorganization and focal adhesion disassembly and influences multiple EC functions. To determine whether TSP might regulate EC–EC interactions, we studied the effect of exogenous TSP on the movement of albumin across postconfluent EC monolayers. TSP increased transendothelial albumin flux in a dose-dependent manner at concentrations ≥1 μg/ml (2.2 nM). Increases in albumin flux were observed as early as 1 h after exposure to 30 μg/ml (71 nM) TSP. Inhibition of tyrosine kinases with herbimycin A or genistein protected against the TSP-induced barrier dysfunction by >80% and >50%, respectively. TSP-exposed monolayers exhibited actin reorganization and intercellular gap formation, whereas pretreatment with herbimycin A protected against this effect. Increased staining of phosphotyrosine-containing proteins was observed in plaque-like structures and at the intercellular boundaries of TSP-treated cells. In the presence of protein tyrosine phosphatase inhibition, TSP induced dose- and time-dependent increments in levels of phosphotyrosine-containing proteins; these TSP dose and time requirements were compatible with those defined for EC barrier dysfunction. Phosphoproteins that were identified include the adherens junction proteins focal adhesion kinase, paxillin, γ-catenin, and p120Cas. These combined data indicate that TSP can modulate endothelial barrier function, in part, through tyrosine phosphorylation of EC proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rho1p is a yeast homolog of mammalian RhoA small GTP-binding protein. Rho1p is localized at the growth sites and required for bud formation. We have recently shown that Bni1p is a potential target of Rho1p and that Bni1p regulates reorganization of the actin cytoskeleton through interactions with profilin, an actin monomer-binding protein. Using the yeast two-hybrid screening system, we cloned a gene encoding a protein that interacted with Bni1p. This protein, Spa2p, was known to be localized at the bud tip and to be implicated in the establishment of cell polarity. The C-terminal 254 amino acid region of Spa2p, Spa2p(1213–1466), directly bound to a 162-amino acid region of Bni1p, Bni1p(826–987). Genetic analyses revealed that both the bni1 and spa2 mutations showed synthetic lethal interactions with mutations in the genes encoding components of the Pkc1p-mitogen-activated protein kinase pathway, in which Pkc1p is another target of Rho1p. Immunofluorescence microscopic analysis showed that Bni1p was localized at the bud tip in wild-type cells. However, in the spa2 mutant, Bni1p was not localized at the bud tip and instead localized diffusely in the cytoplasm. A mutant Bni1p, which lacked the Rho1p-binding region, also failed to be localized at the bud tip. These results indicate that both Rho1p and Spa2p are involved in the localization of Bni1p at the growth sites where Rho1p regulates reorganization of the actin cytoskeleton through Bni1p.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RhoG is a member of the Rho family of GTPases that shares 72% and 62% sequence identity with Rac1 and Cdc42Hs, respectively. We have expressed mutant RhoG proteins fused to the green fluorescent protein and analyzed subsequent changes in cell surface morphology and modifications of cytoskeletal structures. In rat and mouse fibroblasts, green fluorescent protein chimera and endogenous RhoG proteins colocalize according to a tubular cytoplasmic pattern, with perinuclear accumulation and local concentration at the plasma membrane. Constitutively active RhoG proteins produce morphological and cytoskeletal changes similar to those elicited by a simultaneous activation of Rac1 and Cdc42Hs, i.e., the formation of ruffles, lamellipodia, filopodia, and partial loss of stress fibers. In addition, RhoG and Cdc42Hs promote the formation of microvilli at the cell apical membrane. RhoG-dependent events are not mediated through a direct interaction with Rac1 and Cdc42Hs targets such as PAK-1, POR1, or WASP proteins but require endogenous Rac1 and Cdc42Hs activities: coexpression of a dominant negative Rac1 impairs membrane ruffling and lamellipodia but not filopodia or microvilli formation. Conversely, coexpression of a dominant negative Cdc42Hs only blocks microvilli and filopodia, but not membrane ruffling and lamellipodia. Microtubule depolymerization upon nocodazole treatment leads to a loss of RhoG protein from the cell periphery associated with a reversal of the RhoG phenotype, whereas PDGF or bradykinin stimulation of nocodazole-treated cells could still promote Rac1- and Cdc42Hs-dependent cytoskeletal reorganization. Therefore, our data demonstrate that RhoG controls a pathway that requires the microtubule network and activates Rac1 and Cdc42Hs independently of their growth factor signaling pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hepatocyte growth factor/scatter factor (HGF/SF) stimulates the motility of epithelial cells, initially inducing centrifugal spreading of colonies followed by disruption of cell–cell junctions and subsequent cell scattering. In Madin–Darby canine kidney cells, HGF/SF-induced motility involves actin reorganization mediated by Ras, but whether Ras and downstream signals regulate the breakdown of intercellular adhesions has not been established. Both HGF/SF and V12Ras induced the loss of the adherens junction proteins E-cadherin and β-catenin from intercellular junctions during cell spreading, and the HGF/SF response was blocked by dominant-negative N17Ras. Desmosomes and tight junctions were regulated separately from adherens junctions, because they were not disrupted by V12Ras. MAP kinase, phosphatidylinositide 3-kinase (PI 3-kinase), and Rac were required downstream of Ras, because loss of adherens junctions was blocked by the inhibitors PD098059 and LY294002 or by dominant-inhibitory mutants of MAP kinase kinase 1 or Rac1. All of these inhibitors also prevented HGF/SF-induced cell scattering. Interestingly, activated Raf or the activated p110α subunit of PI 3-kinase alone did not induce disruption of adherens junctions. These results indicate that activation of both MAP kinase and PI 3-kinase by Ras is required for adherens junction disassembly and that this is essential for the motile response to HGF/SF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ubiquitously expressed Na–H exchanger NHE1 functions in regulating intracellular pH and cell volume. NHE1 activity is stimulated by hormones, growth factors, and activation of integrin receptors. We recently determined that NHE1 activity is also stimulated by activation of the low molecular weight GTPase RhoA and that increases in NHE1 activity are necessary for RhoA-induced formation of actin stress fibers. We now show that NHE1 acts downstream of RhoA to modulate initial steps in integrin signaling for the assembly of focal adhesions. Adhesion of CCL39 fibroblasts on fibronectin was markedly delayed in the presence of the NHE inhibitor ethylisopropylamiloride. In mutant PS120 cells, derived from CCL39 fibroblasts but lacking NHE1, adhesion was also delayed but was rescued in PS120 cells stably expressing NHE1. In the absence of NHE1 activity, cell spreading was inhibited, and the accumulation of integrins, paxillin, and vinculin at focal contacts was impaired. Additionally, tyrosine phosphorylation of p125FAK induced by integrin clustering was also impaired. Inactivation of RhoA with C3 transferase and inhibition of the Rho-kinase p160ROCK with the pyridine derivative Y-27632 completely abolished activation of NHE1 by integrins but not by platelet-derived growth factor. These findings indicate that NHE1 acts downstream of RhoA to contribute a previously unrecognized critical signal to proximal events in integrin-induced cytoskeletal reorganization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Rho subfamily of the Rho small G protein family (Rho) regulates formation of stress fibers and focal adhesions in many types of cultured cells. In moving cells, dynamic and coordinate disassembly and reassembly of stress fibers and focal adhesions are observed, but the precise mechanisms in the regulation of these processes are poorly understood. We previously showed that 12-O-tetradecanoylphorbol-13-acetate (TPA) first induced disassembly of stress fibers and focal adhesions followed by their reassembly in MDCK cells. The reassembled stress fibers showed radial-like morphology that was apparently different from the original. We analyzed here the mechanisms of these TPA-induced processes. Rho inactivation and activation were necessary for the TPA-induced disassembly and reassembly, respectively, of stress fibers and focal adhesions. Both inactivation and activation of the Rac subfamily of the Rho family (Rac) inhibited the TPA-induced reassembly of stress fibers and focal adhesions but not their TPA-induced disassembly. Moreover, microinjection or transient expression of Rab GDI, a regulator of all the Rab small G protein family members, inhibited the TPA-induced reassembly of stress fibers and focal adhesions but not their TPA-induced disassembly, indicating that, furthermore, activation of some Rab family members is necessary for their TPA-induced reassembly. Of the Rab family members, at least Rab5 activation was necessary for the TPA-induced reassembly of stress fibers and focal adhesions. The TPA-induced, small G protein-mediated reorganization of stress fibers and focal adhesions was closely related to the TPA-induced cell motility. These results indicate that the Rho and Rab family members coordinately regulate the TPA-induced reorganization of stress fibers and focal adhesions that may cause cell motility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endothelial barrier function is regulated at the cellular level by cytoskeletal-dependent anchoring and retracting forces. In the present study we have examined the signal transduction pathways underlying agonist-stimulated reorganization of the actin cytoskeleton in human umbilical vein endothelial cells. Receptor activation by thrombin, or the thrombin receptor (proteinase-activated receptor 1) agonist peptide, leads to an early increase in stress fiber formation followed by cortical actin accumulation and cell rounding. Selective inhibition of thrombin-stimulated signaling systems, including Gi/o (pertussis toxin sensitive), p42/p44, and p38 MAP kinase cascades, Src family kinases, PI-3 kinase, or S6 kinase pathways had no effect on the thrombin response. In contrast, staurosporine and KT5926, an inhibitor of myosin light chain kinase, effectively blocked thrombin-induced cell rounding and retraction. The contribution of Rho to these effects was analyzed by using bacterial toxins that either activate or inhibit the GTPase. Escherichia coli cytotoxic necrotizing factor 1, an activator of Rho, induced the appearance of dense actin cables across cells without perturbing monolayer integrity. Accordingly, lysophosphatidic acid, an activator of Rho-dependent stress fiber formation in fibroblasts, led to reorganization of polymerized actin into stress fibers but failed to induce cell rounding. Inhibition of Rho with Clostridium botulinum exoenzyme C3 fused to the B fragment of diphtheria toxin caused loss of stress fibers with only partial attenuation of thrombin-induced cell rounding. The implication of Rac and Cdc42 was analyzed in transient transfection experiments using either constitutively active (V12) or dominant-interfering (N17) mutants. Expression of RacV12 mimicked the effect of thrombin on cell rounding, and RacN17 blocked the response to thrombin, whereas Cdc42 mutants were without effect. These observations suggest that Rho is involved in the maintenance of endothelial barrier function and Rac participates in cytoskeletal remodeling by thrombin in human umbilical vein endothelial cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rab5 is a regulatory GTPase of vesicle docking and fusion that is involved in receptor-mediated endocytosis and pinocytosis. Introduction of active Rab5 in cells stimulates the rate of endocytosis and vesicle fusion, resulting in the formation of large endocytic vesicles, whereas dominant negative Rab5 inhibits vesicle fusion. Here we show that introduction of active Rab5 in fibroblasts also induced reorganization of the actin cytoskeleton but not of microtubule filaments, resulting in prominent lamellipodia formation. The Rab5-induced lamellipodia formation did not require activation of PI3-K or the GTPases Ras, Rac, Cdc42, or Rho, which are all strongly implicated in cytoskeletal reorganization. Furthermore, lamellipodia formation by insulin, Ras, or Rac was not affected by expression of dominant negative Rab5. In addition, cells expressing active Rab5 displayed a dramatic stimulation of cell migration, with the lamellipodia serving as the leading edge. Both lamellipodia formation and cell migration were dependent on actin polymerization but not on microtubules. These results demonstrate that Rab5 induces lamellipodia formation and cell migration and that the Rab5-induced lamellipodia formation occurs by a novel mechanism independent of, and distinct from, PI3-K, Ras, or Rho-family GTPases. Thus, Rab5 can control not only endocytosis but also actin cytoskeleton reorganization and cell migration, which provides strong support for an intricate relationship between these processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ARNO is a member of a family of guanine-nucleotide exchange factors with specificity for the ADP-ribosylation factor (ARF) GTPases. ARNO possesses a central catalytic domain with homology to yeast Sec7p and an adjacent C-terminal pleckstrin homology (PH) domain. We have previously shown that ARNO localizes to the plasma membrane in vivo and efficiently catalyzes ARF6 nucleotide exchange in vitro. In addition to a role in endocytosis, ARF6 has also been shown to regulate assembly of the actin cytoskeleton. To determine whether ARNO is an upstream regulator of ARF6 in vivo, we examined the distribution of actin in HeLa cells overexpressing ARNO. We found that, while expression of ARNO leads to disassembly of actin stress fibers, it does not result in obvious changes in cell morphology. However, treatment of ARNO transfectants with the PKC agonist phorbol 12-myristate 13-acetate results in the dramatic redistribution of ARNO, ARF6, and actin into membrane protrusions resembling lamellipodia. This process requires ARF activation, as actin rearrangement does not occur in cells expressing a catalytically inactive ARNO mutant. PKC phosphorylates ARNO at a site immediately C-terminal to its PH domain. However, mutation of this site had no effect on the ability of ARNO to regulate actin rearrangement, suggesting that phosphorylation of ARNO by PKC does not positively regulate its activity. Finally, we demonstrate that an ARNO mutant lacking the C-terminal PH domain no longer mediates cytoskeletal reorganization, indicating a role for this domain in appropriate membrane localization. Taken together, these data suggest that ARNO represents an important link between cell surface receptors, ARF6, and the actin cytoskeleton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have identified partial loss of function mutations in class VI unconventional myosin, 95F myosin, which results in male sterility. During spermatogenesis the germ line precursor cells undergo mitosis and meiosis to form a bundle of 64 spermatids. The spermatids remain interconnected by cytoplasmic bridges until individualization. The process of individualization involves the formation of a complex of cytoskeletal proteins and membrane, the individualization complex (IC), around the spermatid nuclei. This complex traverses the length of each spermatid resolving the shared membrane into a single membrane enclosing each spermatid. We have determined that 95F myosin is a component of the IC whose function is essential for individualization. In wild-type testes, 95F myosin localizes to the leading edge of the IC. Two independent mutations in 95F myosin reduce the amount of 95F myosin in only a subset of tissues, including the testes. This reduction of 95F myosin causes male sterility as a result of defects in spermatid individualization. Germ line transformation with the 95F myosin heavy chain cDNA rescues the male sterility phenotype. IC movement is aberrant in these 95F myosin mutants, indicating a critical role for 95F myosin in IC movement. This report is the first identification of a component of the IC other than actin. We propose that 95F myosin is a motor that participates in membrane reorganization during individualization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Growth factors such as insulin regulate phosphatidylinositol 3-kinase-dependent actin cytoskeleton rearrangement in many types of cells. However, the mechanism by which the insulin signal is transmitted to the actin cytoskeleton remains largely unknown. Yeast two-hybrid screening revealed that the phosphatidylinositol 3-kinase downstream effector phosphoinositide-dependent protein kinase-1 (PDK1) interacted with protein kinase N (PKN), a Rho-binding Ser/Thr protein kinase potentially implicated in a variety of cellular events, including phosphorylation of cytoskeletal components. PDK1 and PKN interacted in vitro and in intact cells, and this interaction was mediated by the kinase domain of PDK1 and the carboxyl terminus of PKN. In addition to a direct interaction, PDK1 also phosphorylated Thr774 in the activation loop and activated PKN. Insulin treatment or ectopic expression of the wild-type PDK1 or PKN, but not protein kinase Cζ, induced actin cytoskeleton reorganization and membrane ruffling in 3T3-L1 fibroblasts and Rat1 cells that stably express the insulin receptor (Rat1-IR). However, the insulin-stimulated actin cytoskeleton reorganization in Rat1-IR cells was prevented by expression of kinase-defective PDK1 or PDK1-phosphorylation site-mutated PKN. Thus, phosphorylation by PDK1 appears to be necessary for PKN to transduce signals from the insulin receptor to the actin cytoskeleton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used the chemotactic ability of Dictyostelium cells to examine the roles of Rho family members, known regulators of the assembly of F-actin, in cell movement. Wild-type cells polarize with a leading edge enriched in F-actin toward a chemoattractant. Overexpression of constitutively active Dictyostelium Rac1B61L or disruption of DdRacGAP1, which encodes a Dictyostelium Rac1 GAP, induces membrane ruffles enriched with actin filaments around the perimeter of the cell and increased levels of F-actin in resting cells. Whereas wild-type cells move linearly toward the cAMP source, Rac1B61L and Ddracgap1 null cells make many wrong turns and chemotaxis is inefficient, which presumably results from the unregulated activation of F-actin assembly and pseudopod extension. Cells expressing dominant-negative DdRac1B17N do not have a well-defined F-actin-rich leading edge and do not protrude pseudopodia, resulting in very poor cell motility. From these studies and assays examining chemoattractant-mediated F-actin assembly, we suggest DdRac1 regulates the basal levels of F-actin assembly, its dynamic reorganization in response to chemoattractants, and cellular polarity during chemotaxis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has long been known that rearrangements of chromosomes through breakage-fusion-bridge (BFB) cycles may cause variability of phenotypic and genetic traits within a cell population. Because intercellular heterogeneity is often found in neoplastic tissues, we investigated the occurrence of BFB events in human solid tumors. Evidence of frequent BFB events was found in malignancies that showed unspecific chromosome aberrations, including ring chromosomes, dicentric chromosomes, and telomeric associations, as well as extensive intratumor heterogeneity in the pattern of structural changes but not in tumors with tumor-specific aberrations and low variability. Fluorescence in situ hybridization analysis demonstrated that chromosomes participating in anaphase bridge formation were involved in a significantly higher number of structural aberrations than other chromosomes. Tumors with BFB events showed a decreased elimination rate of unstable chromosome aberrations after irradiation compared with normal cells and other tumor cells. This result suggests that a combination of mitotically unstable chromosomes and an elevated tolerance to chromosomal damage leads to constant genomic reorganization in many malignancies, thereby providing a flexible genetic system for clonal evolution and progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Somatotopic maps in the cortex and the thalamus of adult monkeys and humans reorganize in response to altered inputs. After loss of the sensory afferents from the forelimb in monkeys because of transection of the dorsal columns of the spinal cord, therapeutic amputation of an arm or transection of the dorsal roots of the peripheral nerves, the deprived portions of the hand and arm representations in primary somatosensory cortex (area 3b), become responsive to inputs from the face and any remaining afferents from the arm. Cortical and subcortical mechanisms that underlie this reorganization are uncertain and appear to be manifold. Here we show that the face afferents from the trigeminal nucleus of the brainstem sprout and grow into the cuneate nucleus in adult monkeys after lesions of the dorsal columns of the spinal cord or therapeutic amputation of an arm. This growth may underlie the large-scale expansion of the face representation into the hand region of somatosensory cortex that follows such deafferentations.