37 resultados para Plasmodium-chabaudi-adami


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adherence of mature Plasmodium falciparum parasitized erythrocytes (PRBCs) to microvascular endothelium contributes directly to acute malaria pathology. We affinity purified molecules from detergent extracts of surface-radioiodinated PRBCs using several endothelial cell receptors known to support PRBC adherence, including CD36, thrombospondin (TSP), and intercellular adhesion molecule 1 (ICAM-1). All three host receptors affinity purified P. falciparum erythrocyte membrane protein 1 (PfEMP1), a very large malarial protein expressed on the surface of adherent PRBCs. Binding of PfEMP1 to particular host cell receptors correlated with the binding phenotype of the PRBCs from which PfEMP1 was extracted. Preadsorption of PRBC extracts with anti-PfEMP1 antibodies, CD36, or TSP markedly reduced PfEMP1 binding to CD36 or TSP. Mild trypsinization of intact PRBCs of P. falciparum strains shown to express antigenically different PfEMP1 released different (125)I-labeled tryptic fragments of PfEMP1 that bound specifically to CD36 and TSP. In clone C5 and strain MC, these activities resided on different tryptic fragments, but a single tryptic fragment from clone ItG-ICAM bound to both CD36 and TSP. Hence, the CD36- and TSP-binding domains are distinct entities located on a single PfEMP1 molecule. PfEMP1, the malarial variant antigen on infected erythrocytes, is therefore a receptor for CD36, TSP, and ICAM-1. A therapeutic approach to block or reverse adherence of PRBCs to host cell receptors can now be pursued with the identification of PfEMP1 as a malarial receptor for PRBC adherence to host proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasite-derived proteins expressed on the surface of erythrocytes infected with Plasmodium falciparum are important virulence factors, since they mediate binding of infected cells to diverse receptors on vascular endothelium and are targets of a protective immune response. They are difficult to study because they undergo rapid clonal antigenic variation in vitro, which precludes the derivation of phenotypically homogeneous cultures. Here we have utilized sequence-specific proteases to dissect the role of defined antigenic variants in binding to particular receptors. By selection of protease-resistant subpopulations of parasites on defined receptors we (i) confirm the high rate of antigenic variation in vitro; (ii) demonstrate that a single infected erythrocyte can bind to intercellular adhesion molecule 1, CD36, and thrombospondin; (iii) show that binding to intercellular adhesion molecule 1 and CD36 are functions of the variant antigen; and (iv) suggest that binding to thrombospondin may be mediated by other components of the infected erythrocyte surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium falciparum malaria parasites were transformed with plasmids containing P. falciparum or Toxoplasma gondii dihydrofolate reductase-thymidylate synthase (dhfr-ts) coding sequences that confer resistance to pyrimethamine. Under pyrimethamine pressure, transformed parasites were obtained that maintained the transfected plasmids as unrearranged episomes for several weeks. These parasite populations were replaced after 2 to 3 months by parasites that had incorporated the transfected DNA into nuclear chromosomes. Depending upon the particular construct used for transformation, homologous integration was detected in the P. falciparum dhfr-ts locus (chromosome 4) or in hrp3 and hrp2 sequences that were used in the plasmid constructs as gene control regions (chromosomes 13 and 8, respectively). Transformation by homologous integration sets the stage for targeted gene alterations and knock-outs that will advance understanding of P. falciparum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied inhibition of growth of the malaria parasite Plasmodium falciparum in in vitro culture using antisense (AS) oligodeoxynucleotides (ODNs) against different target genes. W2 and W2mef strains of drug-resistant parasites were exposed to AS ODNs over 48 hr, and growth was determined by microscopic examination and [3H]hypoxanthine incorporation. At ODN concentrations of 1 microM, phosphorothioate (PS) ODNs inhibited growth in a target-independent manner. However, between 0.5 and 0.005 microM, ODNs against dihydrofolate reductase, dihydropteroate synthetase, ribonucleotide reductase, the schizont multigene family, and erythrocyte binding antigen EBA175 significantly inhibited growth compared with a PS AS ODN against human immunodeficiency virus, two AS ODNs containing eight mismatches, or the sense strand controls (P < 0.0001). The IC50 was approximately 0.05 microM, whereas that for non-sequence-specific controls was 15-fold higher. PS AS ODNs against DNA polymerase alpha showed less activity than that for other targets, whereas a single AS ODN against triose-phosphate isomerase did not differ significantly from controls. We conclude that at concentrations below 0.5 microM, PS AS ODNs targeted against several malarial genes significantly inhibit growth of drug-resistant parasites in a nucleotide sequence-dependent manner. This technology represents an alternative method for identifying malarial genes as potential drug targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pfmdr1 gene has been associated with a drug-resistant phenotype in Plasmodium falciparum, and overexpression of pfmdr1 has been associated with mefloquine- and halofantrine-resistant parasites, but little is known about the functional role of pfmdr1 in this process. Here, we demonstrate that the pfmdr1 gene expressed in a heterologous yeast system functions as a transport molecule and complements a mutation in ste6, a gene which encodes a mating pheromone a-factor export molecule. In addition, the pfmdr1 gene containing two mutations which are associated with naturally occurring chloroquine resistance abolishes this mating phenotype, suggesting that these genetic polymorphisms alter this transport function. Our results support the functional role of pfmdr1 as a transport molecule in the mediation of drug resistance and provide an assay system to address the nature of this transport function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Open reading frames in the Plasmodium falciparum genome encode domains homologous to the adhesive domains of the P. falciparum EBA-175 erythrocyte-binding protein (eba-175 gene product) and those of the Plasmodium vivax and Plasmodium knowlesi Duffy antigen-binding proteins. These domains are referred to as Duffy binding-like (DBL), after the receptor that determines P. vivax invasion of Duffy blood group-positive human erythrocytes. Using oligonucleotide primers derived from short regions of conserved sequence, we have developed a reverse transcription-PCR method that amplifies sequences encoding the DBL domains of expressed genes. Products of these reverse transcription-PCR amplifications include sequences of single-copy genes (including eba-175) and variably transcribed genes that cross-hybridize to multiple regions of the genome. Restriction patterns of the multicopy genes show a high degree of polymorphism among different parasite lines, whereas single-copy genes are generally conserved. Characterization of the single-copy genes has identified a gene (ebl-1) that is related to eba-175 and is likely to be involved in erythrocyte invasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have explored the evolutionary history of the Apicomplexa and two related protistan phyla, Dinozoa and Ciliophora, by comparing the nucleotide sequences of small subunit ribosomal RNA genes. We conclude that the Plasmodium lineage, to which the malarial parasites belong, diverged from other apicomplexan lineages (piroplasmids and coccidians) several hundred million years ago, perhaps even before the Cambrian. The Plasmodium radiation, which gave rise to several species parasitic to humans, occurred approximately 129 million years ago; Plasmodium parasitism of humans has independently arisen several times. The origin of apicomplexans (Plasmodium), dinoflagellates, and ciliates may be > 1 billion years old, perhaps older than the three multicellular kingdoms of animals, plants, and fungi. Digenetic parasitism independently evolved several times in the Apicomplexa.