39 resultados para Phylogenetic analyses


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The origin of land vertebrates was one of the major transitions in the history of vertebrates. Yet, despite many studies that are based on either morphology or molecules, the phylogenetic relationships among tetrapods and the other two living groups of lobe-finned fishes, the coelacanth and the lungfishes, are still unresolved and debated. Knowledge of the relationships among these lineages, which originated back in the Devonian, has profound implications for the reconstruction of the evolutionary scenario of the conquest of land. We collected the largest molecular data set on this issue so far, about 3,500 base pairs from seven species of the large 28S nuclear ribosomal gene. All phylogenetic analyses (maximum parsimony, neighbor-joining, and maximum likelihood) point toward the hypothesis that lungfishes and coelacanths form a monophyletic group and are equally closely related to land vertebrates. This evolutionary hypothesis complicates the identification of morphological or physiological preadaptations that might have permitted the common ancestor of tetrapods to colonize land. This is because the reconstruction of its ancestral conditions would be hindered by the difficulty to separate uniquely derived characters from shared derived characters in the coelacanth/lungfish and tetrapod lineages. This molecular phylogeny aids in the reconstruction of morphological evolutionary steps by providing a framework; however, only paleontological evidence can determine the sequence of morphological acquisitions that allowed lobe-finned fishes to colonize land.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evolutionary theory predicts the recent spread of primate immunodeficiency viruses (PIVs) to new human populations to be accompanied by positive selection in response to new host environments and/or by random genetic drift. I assess evidence for positive selection in human and chimpanzee PIVs type I (PIV1s), using ratios of synonymous to nonsynonymous nucleotide change based on branch lengths and outgroup rooting. Ratios are smaller for PIV1s from humans than for PIV1 from a chimpanzee for the pol, gag, and env glycoprotein 120 (gp120) regions, indicating greater effects of positive selection in PIV1s from humans. Parsimony-based relative rate tests for amino acid changes showed significant differences between PIV1s from humans and chimpanzees in 18 of 48 pairwise comparisons, with all 18 showing faster rates of change in PIV1s from humans. This study indicates that in some instances, the recent evolution of human PIV1s follows a speciational pattern, in which increased diversification of taxa is correlated with greater amounts of character change appearing and being maintained through time. This extends the generality of the speciational pattern to a group of organisms (viruses) having the fastest known rates of anagenetic change for nucleotide characters and indicates that comprehensive understanding of PIV1 evolution requires consideration of both anagenetic change within viral lineages and the relative historical success of different viral clades. Phylogenetic analyses show that neither PIV1s infecting humans nor those infecting chimpanzees represent monophyletic groups and suggest multiple host-species shifts for PIV1s.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DNA is the first SINE isolated from zebrafish (Danio rerio) exhibiting all the hallmarks of these tRNA-derived elements. DANA is unique in its clearly defined substructure of distinct cassettes. In contrast to generic SINE elements, DANA appears to have been assembled by insertions of short sequences into a progenitor, tRNA-derived element. Once associated with each other, these subunits were amplified as a new transposable element with such a remarkable success that DANA-related sequences comprise approximately 10% of the modern zebrafish genome. At least some of the sequences comprised by the full-length element were capable of movement, forming a new group of mobile, composite transposons, one of which caused an insertional mutation in the zebrafish no tail gene. Being present only in the genus Danio, and estimated to be as old as the genus itself, DANA may have played a role in Danio speciation by massive amplification and genome-wide dispersion. There are extensive DNA polymorphisms between zebrafish populations and strains detected by PCR amplification using primers specific to DANA, suggesting that the DANA element will be useful as a molecular tool for genetic and phylogenetic analyses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coccidioides immitis, cause of a recent epidemic of "Valley fever" in California, is typical of many eukaryotic microbes in that mating and meiosis have yet to be reported, but it is not clear whether sex is truly absent or just cryptic. To find out, we have undertaken a population genetic study using PCR amplification, screening for single-strand conformation polymorphisms, and direct DNA sequencing to find molecular markers with nucleotide-level resolution. Both population genetic and phylogenetic analyses indicate that C. immitis is almost completely recombining. To our knowledge, this study is the first to find molecular evidence for recombination in a fungus for which no sexual stage has yet been described. These results motivate a directed search for mating and meiosis and illustrate the utility of single-strand conformation polymorphism and sequencing with arbitrary primer pairs in molecular population genetics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DNA was extracted from the remains of 35 ground sloths from various parts of North and South America. Two specimens of Mylodon darwinii, a species that went extinct at the end of the last glaciation, yielded amplifiable DNA. However, of the total DNA extracted, only approximately 1/1000 originated from the sloth, whereas a substantial part of the remainder was of bacterial and fungal origin. In spite of this, > 1100 bp of sloth mitochondrial rDNA sequences could be reconstructed from short amplification products. Phylogenetic analyses using homologous sequences from all extant edentate groups suggest that Mylodon darwinii was more closely related to the two-toed than the three-toed sloths and, thus, that an arboreal life-style has evolved at least twice among sloths. The divergence of Mylodon and the two-toed sloth furthermore allows a date for the radiation of armadillos, anteaters, and sloths to be estimated. This result shows that the edentates differ from other mammalian orders in that they contain lineages that diverged before the end of the Cretaceous Period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The myc gene family encodes a group of transcription factors that regulate cell proliferation and differentiation. These genes are widely studied because of their importance as proto-oncogenes. Phylogenetic analyses are described here for 45 Myc protein sequences representing c-, N-, L-, S-, and B-myc genes. A gene duplication early in vertebrate evolution produced the c-myc lineage and another lineage that later gave rise to the N- and L-myc lineages by another gene duplication. Evolutionary divergence in the myc gene family corresponds closely to the known branching order of the major vertebrate groups. The patterns of sequence evolution are described for five separate highly conserved regions, and these analyses show that differential rates of sequence divergence (= mosaic evolution) have occurred among conserved motifs. Further, the closely related dimerization partner protein Max exhibits significantly less sequence variability than Myc. It is suggested that the reduced variability in max stems from natural selection acting to preserve dimerization capability with products of myc and related genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An extensive sequence comparison of the chloroplast ndhF gene from all major clades of the largest flowering plant family (Asteraceae) shows that this gene provides approximately 3 times more phylogenetic information than rbcL. This is because it is substantially longer and evolves twice as fast. The 5' region (1380 bp) of ndhF is very different from the 3' region (855 bp) and is similar to rbcL in both the rate and the pattern of sequence change. The 3' region is more A+T-rich, has higher levels of nonsynonymous base substitution, and shows greater transversion bias at all codon positions. These differences probably reflect different functional constraints on the 5' and 3' regions of ndhF. The two patterns of base substitutions of ndhF are particularly advantageous for phylogenetic reconstruction because the conserved and variable segments can be used for older and recent groups, respectively. Phylogenetic analyses of 94 ndhF sequences provided much better resolution of relationships than previous molecular and morphological phylogenies of the Asteraceae. The ndhF tree identified five major clades: (i) the Calyceraceae is the sister family of Asteraceae; (ii) the Barnadesioideae is monophyletic and is the sister group to the rest of the family; (iii) the Cichorioideae and its two basal tribes Mutisieae and Cardueae are paraphyletic; (iv) four tribes of Cichorioideae (Lactuceae, Arctoteae, Liabeae, and Vernonieae) form a monophyletic group, and these are the sister clade of the Asteroideae; and (v) the Asteroideae is monophyletic and includes three major clades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate phylogenetic relationships among plasmons in Triticum and Aegilops, PCR–single-strand conformational polymorphism (PCR-SSCP) analyses were made of 14.0-kb chloroplast (ct) and 13.7-kb mitochondrial (mt)DNA regions that were isolated from 46 alloplasmic wheat lines and one euplasmic line. These plasmons represent 31 species of the two genera. The ct and mtDNA regions included 10 and 9 structural genes, respectively. A total of 177 bands were detected, of which 40.6% were variable. The proportion of variable bands in ctDNA (51.1%) was higher than that of mtDNA (28.9%). The phylogenetic trees of plasmons, derived by two different models, indicate a common picture of plasmon divergence in the two genera and suggest three major groups of plasmons (Einkorn, Triticum, and Aegilops). Because of uniparental plasmon transmission, the maternal parents of all but one polyploid species were identified. Only one Aegilops species, Ae. speltoides, was included in the Triticum group, suggesting that this species is the plasmon and B and G genome donor of all polyploid wheats. ctDNA variations were more intimately correlated with vegetative characters, whereas mtDNA variations were more closely correlated with reproductive characters. Plasmon divergence among the diploids of the two genera largely paralleled genome divergence. The relative times of origin of the polyploid species were inferred from genetic distances from their putative maternal parents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant phylogenetic estimates are most likely to be reliable when congruent evidence is obtained independently from the mitochondrial, plastid, and nuclear genomes with all methods of analysis. Here, results are presented from separate and combined genomic analyses of new and previously published data, including six and nine genes (8,911 bp and 12,010 bp, respectively) for different subsets of taxa that suggest Amborella + Nymphaeales (water lilies) are the first-branching angiosperm lineage. Before and after tree-independent noise reduction, most individual genomic compartments and methods of analysis estimated the Amborella + Nymphaeales basal topology with high support. Previous phylogenetic estimates placing Amborella alone as the first extant angiosperm branch may have been misled because of a series of specific problems with paralogy, suboptimal outgroups, long-branch taxa, and method dependence. Ancestral character state reconstructions differ between the two topologies and affect inferences about the features of early angiosperms.