63 resultados para Peripheral elimination


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disease resistance in plants is often controlled by a gene-for-gene mechanism in which avirulence (avr) gene products encoded by pathogens are specifically recognized, either directly or indirectly, by plant disease resistance (R) gene products. Members of the NBS-LRR class of R genes encode proteins containing a putative nucleotide binding site (NBS) and carboxyl-terminal leucine-rich repeats (LRRs). Generally, NBS-LRR proteins do not contain predicted transmembrane segments or signal peptides, suggesting they are soluble cytoplasmic proteins. RPM1 is an NBS-LRR protein from Arabidopsis thaliana that confers resistance to Pseudomonas syringae expressing either avrRpm1 or avrB. RPM1 protein was localized by using an epitope tag. In contrast to previous suggestions, RPM1 is a peripheral membrane protein that likely resides on the cytoplasmic face of the plasma membrane. Furthermore, RPM1 is degraded coincident with the onset of the hypersensitive response, suggesting a negative feedback loop controlling the extent of cell death and overall resistance response at the site of infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To evaluate the effect of heparin on duration of catheter patency and on prevention of complications associated with use of peripheral venous and arterial catheters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During macronuclear development in the ciliated protozoan Tetrahymena thermophila, extensive DNA deletions occur, eliminating thousands of internal eliminated sequences (IESs). Using an rDNA-based transformation assay we have analyzed the role during DNA deletion of DNA flanking mse2.9, an IES within the second intron of a gene encoding an as yet incompletely characterized protein. We establish that a cis-acting sequence for mse2.9 deletion acts at a distance to specify deletion boundaries. A complex sequence element necessary for efficient and accurate mse2.9 deletion is located in the region 47–81 bp from the right side of mse2.9. The ability of a variety of IES flanking sequences to rescue a processing deficient mse2.9 construct indicates that some cis-acting signal is shared among different IESs. In addition, the short intronic sequence that flanks mse2.9 is able to direct efficient and accurate processing. Despite no obvious sequence similarity between mse2.9 and other IESs, we suggest that a common mechanism is used to delete different families of IESs in Tetrahymena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early detection is an effective means of reducing cancer mortality. Here, we describe a highly sensitive high-throughput screen that can identify panels of markers for the early detection of solid tumor cells disseminated in peripheral blood. The method is a two-step combination of differential display and high-sensitivity cDNA arrays. In a primary screen, differential display identified 170 candidate marker genes differentially expressed between breast tumor cells and normal breast epithelial cells. In a secondary screen, high-sensitivity arrays assessed expression levels of these genes in 48 blood samples, 22 from healthy volunteers and 26 from breast cancer patients. Cluster analysis identified a group of 12 genes that were elevated in the blood of cancer patients. Permutation analysis of individual genes defined five core genes (P ≤ 0.05, permax test). As a group, the 12 genes generally distinguished accurately between healthy volunteers and patients with breast cancer. Mean expression levels of the 12 genes were elevated in 77% (10 of 13) untreated invasive cancer patients, whereas cluster analysis correctly classified volunteers and patients (P = 0.0022, Fisher's exact test). Quantitative real-time PCR confirmed array results and indicated that the sensitivity of the assay (1:2 × 108 transcripts) was sufficient to detect disseminated solid tumor cells in blood. Expression-based blood assays developed with the screening approach described here have the potential to detect and classify solid tumor cells originating from virtually any primary site in the body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteriophage lytic enzymes quickly destroy the cell wall of the host bacterium to release progeny phage. Because such lytic enzymes specifically kill the species in which they were produced, they may represent an effective way to control pathogenic bacteria without disturbing normal microflora. In this report, we studied a murein hydrolase from the streptococcal bacteriophage C1 termed lysin. This enzyme is specific for groups A, C, and E streptococci, with little or no activity toward several oral streptococci or other commensal organisms tested. Using purified lysin in vitro, we show that 1,000 units (10 ng) of enzyme is sufficient to sterilize a culture of ≈107 group A streptococci within 5 seconds. When a single dose of lysin (250 units) is first added to the oral cavity of mice, followed by 107 live group A streptococci, it provides protection from colonization (28.5% infected, n = 21) compared with controls without lysin (70.5% infected, n = 17) (P < 0.03). Furthermore, when lysin (500 units) was given orally to 9 heavily colonized mice, no detectable streptococci were observed 2 h after lysin treatment. In all, these studies show that lysin represents a unique murein hydrolase that has a rapid lethal effect both in vitro and in vivo on group A streptococci, without affecting other indigenous microorganisms analyzed. This general approach may be used to either eliminate or reduce streptococci from the upper respiratory mucosal epithelium of either carriers or infected individuals, thus reducing associated disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Painful peripheral neuropathies are precipitated by nerve injury from disease or trauma. All such injuries will be accompanied by an inflammatory reaction, a neuritis, that will mobilize the immune system. The role of the inflammation itself is difficult to determine in the presence of structural damage to the nerve. A method has been devised to produce a focal neuritis in the rat sciatic nerve that involves no more than trivial structural damage to the nerve. This experimental focal neuritis produces neuropathic pain sensations (heat- and mechano-hyperalgesia, and cold- and mechano-allodynia) in the ipsilateral hind paw. The abnormal pain sensations begin in 1–2 days and last for 4–6 days, with a subsequent return to normal. These results suggest that there is a neuroimmune interaction that occurs at the outset of nerve injury (and perhaps episodically over time in slow developing conditions like diabetic neuropathy) that produces neuropathic pain. The short duration of the phenomena suggest that they may prime the system for more slowly developing mechanisms of abnormal pain (e.g., ectopic discharge in axotomized primary afferent neurons) that underlie the chronic phase of painful neuropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ascorbate peroxidase (AP) is a key enzyme that scavenges potentially harmful H2O2 and thus prevents oxidative damage in plants, especially in N2-fixing legume root nodules. The present study demonstrates that the nodule endodermis of alfalfa (Medicago sativa) root nodules contains elevated levels of AP protein, as well as the corresponding mRNA transcript and substrate (ascorbate). Enhanced AP protein levels were also found in cells immediately peripheral to the infected region of soybean (Glycine max), pea (Pisum sativum), clover (Trifolium pratense), and common bean (Phaseolus vulgaris) nodules. Regeneration of ascorbate was achieved by (homo)glutathione and associated enzymes of the ascorbate-glutathione pathway, which were present at high levels. The presence of high levels of antioxidants suggests that respiratory consumption of O2 in the endodermis or nodule parenchyma may be an essential component of the O2-diffusion barrier that regulates the entry of O2 into the central region of nodules and ensures optimal functioning of nitrogenase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active immunization with the amyloid β (Aβ) peptide has been shown to decrease brain Aβ deposition in transgenic mouse models of Alzheimer's disease and certain peripherally administered anti-Aβ antibodies were shown to mimic this effect. In exploring factors that alter Aβ metabolism and clearance, we found that a monoclonal antibody (m266) directed against the central domain of Aβ was able to bind and completely sequester plasma Aβ. Peripheral administration of m266 to PDAPP transgenic mice, in which Aβ is generated specifically within the central nervous system (CNS), results in a rapid 1,000-fold increase in plasma Aβ, due, in part, to a change in Aβ equilibrium between the CNS and plasma. Although peripheral administration of m266 to PDAPP mice markedly reduces Aβ deposition, m266 did not bind to Aβ deposits in the brain. Thus, m266 appears to reduce brain Aβ burden by altering CNS and plasma Aβ clearance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peripheral blood lymphocytes (PBLs) are an important target for gene transfer studies aimed at human gene therapy. However, no reproducibly efficient methods are currently available to transfer foreign, potentially therapeutic genes into these cells. While vectors derived from murine retroviruses have been the most widely used system, their low infection efficiency in lymphocytes has required prolonged in vitro culturing and selection after infection to obtain useful numbers of genetically modified cells. We previously reported that retroviral vectors pseudotyped with vesicular stomatitis G glycoprotein (VSV-G) envelope can infect a wide variety of cell types and can be concentrated to titers of greater than 10(9) infectious units/ml. In this present study, we examined the ability of amphotropic and pseudotyped vectors expressing a murine cell surface protein, B7-1, to infect the human T-cell line Jurkat or human blood lymphocytes. Limiting dilution analysis of transduced Jurkat cells demonstrated that the pseudotyped vector is significantly more efficient in infecting T cells than an amphotropic vector used at the same multiplicity of infection (moi). To identify the transduction efficiency on PBLs, we examined the levels of cell surface expression of the B7-1 surface marker 48 to 72 hr after infection. The transduction efficiency of PBLs with the pseudotyped vector increased linearly with increasing moi to a maximum of approximately 16-32% at an moi of 40. This relatively high efficiency of infection of a T-cell line and of blood lymphocytes with VSV-G pseudotyped virus demonstrates that such modified pseudotyped retrovirus vectors may be useful reagents for studies of gene therapy for a variety of genetic or neoplastic disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous studies we showed that 5 days of treatment with granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) mobilized murine repopulating cells to the peripheral blood (PB) and that these cells could be efficiently transduced with retroviral vectors. We also found that, 7-14 days after cytokine treatment, the repopulating ability of murine bone marrow (BM) increased 10-fold. In this study we examined the efficiency of gene transfer into cytokine-primed murine BM cells and extended our observations to a nonhuman primate autologous transplantation model. G-CSF/SCF-primed murine BM cells collected 7-14 days after cytokine treatment were equivalent to post-5-fluorouracil BM or G-CSF/SCF-mobilized PB cells as targets for retroviral gene transfer. In nonhuman primates, CD34-enriched PB cells collected after 5 days of G-CSF/SCF treatment and CD34-enriched BM cells collected 14 days later were superior targets for retroviral gene transfer. When a clinically approved supernatant infection protocol with low-titer vector preparations was used, monkeys had up to 5% of circulating cells containing the vector for up to a year after transplantation. This relatively high level of gene transfer was confirmed by Southern blot analysis. Engraftment after transplantation using primed BM cells was more rapid than that using steady-state bone marrow, and the fraction of BM cells saving the most primitive CD34+/CD38- or CD34+/CD38dim phenotype increased 3-fold. We conclude that cytokine priming with G-CSF/SCF may allow collection of increased numbers of primitive cells from both the PB and BM that have improved susceptibility to retroviral transduction, with many potential applications in hematopoietic stem cell-directed gene therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immune cell-derived opioid peptides can activate opioid receptors on peripheral sensory nerves to inhibit inflammatory pain. The intrinsic mechanisms triggering this neuroimmune interaction are unknown. This study investigates the involvement of endogenous corticotropin-releasing factor (CRF) and interleukin-1beta (IL-1). A specific stress paradigm, cold water swim (CWS), produces potent opioid receptor-specific antinociception in inflamed paws of rats. This effect is dose-dependently attenuated by intraplantar but not by intravenous alpha-helical CRF. IL-1 receptor antagonist is ineffective. Similarly, local injection of antiserum against CRF, but not to IL-1, dose-dependently reverses this effect. Intravenous anti-CRF is only inhibitory at 10(4)-fold higher concentrations and intravenous CRF does not produce analgesia. Pretreatment of inflamed paws with an 18-mer 3'-3'-end inverted CRF-antisense oligodeoxynucleotide abolishes CWS-induced antinociception. The same treatment significantly reduces the amount of CRF extracted from inflamed paws and the number of CRF-immunostained cells without affecting gross inflammatory signs. A mismatch oligodeoxynucleotide alters neither the CWS effect nor CRF immunoreactivity. These findings identify locally expressed CRF as the predominant agent to trigger opioid release within inflamed tissue. Endogenous IL-1, circulating CRF or antiinflammatory effects, are not involved. Thus, an intact immune system plays an essential role in pain control, which is important for the understanding of pain in immunosuppressed patients with cancer or AIDS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism by which tolerance is induced via systemic administration of high doses of aqueous antigen has been analyzed by using mice transgenic for a T-cell receptor specific for the influenza virus hemagglutinin (HA) peptide comprising amino acids 126-138. After intravenous injection of 750 (but not 75) micrograms of HA peptide, a state of hyporesponsiveness was rapidly induced. In the thymus, in situ apoptosis in the cortex and at the corticomedullary junction was responsible for a synchronous and massive deletion of CD4+ CD8+ thymocytes. In secondary lymphoid organs, HA-reactive T cells were initially activated but were hyporesponsive at the single cell level. After 3 days, however, those cells were rapidly deleted, at least partially, through an apoptotic process. Therefore, both thymic and peripheral apoptosis, in addition to T-cell receptor desensitization, contribute to high-dose tolerance.