41 resultados para Orthogonal Activation Functions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostaglandin E2 (PGE2) is a potent lipid molecule with complex proinflammatory and immunoregulatory properties. PGE2 can shape the immune response by stimulating the production of IgE antibody by B lymphocytes and the synthesis of T-helper type 2 cytokines [e.g., interleukin (IL)-4, IL-10], while inhibiting production of Th1 cytokines (e.g., interferon-gamma, IL-12). It is unknown what type of receptor binds PGE2 and modulates these responses. Recent analyses in nonhematopoietic cells have identified six PGE2 receptors (EP1, EP2, EP3 alpha, EP3 beta, EP3 gamma, and EP4). This investigation examines quiescent B lymphocytes and reports that these cells express mRNA encoding EP1, EP2, EP3 beta, and EP4 receptors. The immunoregulatory functions of each receptor were investigated using small molecule agonists that preferentially bind EP receptor subtypes. Unlike agonists for EP1 and EP3, agonists that bound EP2 or EP2 and EP4 receptors strongly inhibited expression of class II major histocompatibility complex and CD23 and blocked enlargement of mouse B lymphocytes stimulated with IL-4 and/or lipopolysaccharide. PGE2 promotes differentiation and synergistically enhances IL-4 and lipopolysaccharide-driven B-cell immunoglobulin class switching to IgE. Agonists that bound EP2 or EP2 and EP4 receptors also strongly stimulated class switching to IgE. Experiments employing inhibitors of cAMP metabolism demonstrate that the mechanism by which EP2 and EP4 receptors regulate B lymphocyte activity requires elevation of cAMP. In conclusion, these data suggest that antagonists to EP2 and EP4 receptors will be important for diminishing allergic and IgE-mediated asthmatic responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developmentally regulated genes in Drosophila, which are conserved through evolution, are potential candidates for key functions in biological processes such as cell cycle, programmed cell death, and cancer. We report cloning and characterization of the human homologue of the Drosophila seven in absentia gene (HUMSIAH), which codes for a 282 amino acids putative zinc finger protein. HUMSIAH is localized on human chromosome 16q12-q13. This gene is activated during the physiological program of cell death in the intestinal epithelium. Moreover, human cancer-derived cells selected for suppression of their tumorigenic phenotype exhibit constitutively elevated levels of HUMSIAH mRNA. A similar pattern of expression is also displayed by the p21waf1. These results suggest that mammalian seven in absentia gene, which is a target for activation by p53, may play a role in apoptosis and tumor suppression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Allelic exclusion at the T-cell receptor alpha chain locus is incomplete resulting in the generation of T cells that express two T-cell receptors. The potential involvement of such T cells in autoimmunity has been suggested [Padovan, E., Casorati, G., Dellabona, P., Meyer, S., Brockhaus, M. & Lanzavecchia, A. (1993) Science 262, 422-424; Heath, W. R. & Miller, J. F. A. P. (1993) J. Exp. Med. 178, 1807-1811]. Here we show that expression of a second T-cell receptor can rescue T cells with autospecific receptors from thymic deletion and allow their exit into the periphery. Dual receptor T cells, created by constitutive expression of two transgenic T-cell receptors on a Rag1-/- background, are tolerant to self by maintaining low levels of autospecific receptor, but selfreactive effector function (killing) can be induced through activation via the second receptor. This opens the possibility that T cells carrying two receptors in the periphery of normal individuals contain putatively autoreactive cells that could engage in autoimmune effector functions after recognition of an unrelated environmental antigen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that beta 2 integrins are crucial for leukocyte cell-cell and cell-matrix interactions, and accumulating evidence now suggests that integrins serve not only as a structural link but also as a signal-transducing unit that controls adhesion-induced changes in cell functions. In the present study, we plated human neutrophils on surface-bound anti-beta 2 (CD18) antibodies and found that the small GTP-binding protein p21ras is activated by beta 2 integrins. Pretreatment of the cells with genistein, a tyrosine kinase inhibitor, led to a complete block of p21ras activation, an effect that was not achieved with either U73122, which abolishes the beta 2 integrin-induced Ca2+ signal, or wortmannin, which totally inhibits the phosphatidylinositol 3-kinase activity. Western blot analysis revealed that antibody-induced engagement of beta 2 integrins causes tyrosine phosphorylation of several proteins in the cells. One of these tyrosine-phosphorylated proteins had an apparent molecular mass of 95 kDa and was identified as the protooncogene product Vav, a p21ras guanine nucleotide exchange factor that is specifically expressed in cells of hematopoietic lineage. A role for Vav in the activation of p21ras is supported by the observations that antibody-induced engagement of beta 2 integrins causes an association of Vav with p21ras and that the effect of genistein on p21ras activation coincided with its ability to inhibit both the tyrosine phosphorylation of Vav and the Vav-p21ras association. Taken together, these results indicate that antibody-induced engagement of beta 2 integrins on neutrophils triggers tyrosine phosphorylation of Vav and, possibly through its association, a downstream activation of p21ras.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human transcription factor IIA (TFIIA) is composed of three subunits (alpha, beta, and gamma). TFIIA interacts with the TATA-box binding protein and can overcome repression of transcription. TFIIA was found to be necessary for VP16-mediated transcriptional activation through a coactivator function. We have separated the coactivator and antirepression activities of TFIIA. A TFIIA lacking the alpha subunit was isolated from HeLa cells. This "mini-TFIIA" interacts with the TATA-box binding protein and can overcome repression of transcription, but it is defective in transcriptional coactivator function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two monoclonal antibodies, anti-IL8R1 and anti-IL8R2, raised against both interleukin 8 receptors (IL-8R) of human neutrophils, IL-8R1 and IL-8R2, were used to study individual receptor functions after stimulation with IL-8, GRO alpha, or NAP-2. Efficacy and selectivity of the antibodies were tested in Jurkat cells transfected with cDNA coding for one or the other receptor. The binding of 125 I labeled IL-8 and IL-8-induced changes of the cytosolic free Ca2+ concentration were inhibited by anti-IL8RI in cells expressing IL-8R1 and by anti-IL8R2 in cells expressing IL-8R2. In human neutrophils, release of elastase was observed after stimulation with IL-8 or GRO alpha. The response to IL-8 was inhibited slightly by anti-IL8R1 and more substantially when both monoclonal antibodies were present, while the response to GRO alpha was inhibited by anti-IL8R2 but was not affected by anti-IL8R1. These results indicate that both IL-8 receptors can signal independently for granule enzyme release. Superoxide production, a measure of the respiratory burst, was obtained with increasing concentrations of IL-8 with maximum effects at 25 to 50 nM, but no response was observed upon challenge with GRO alpha or NAP-2 up to 1000 nM. The superoxide production induced by IL-8 was inhibited by anti-IL8R1, but was not affected by anti-IL8R2. Stimulation of neutrophils with IL-8, in contrast to GRO alpha or NAP-2, also elicited phospholipase D activity. The effect of IL-8 was again inhibited by anti-IL-8R1 but not by anti-IL8R2, indicating that this response, like the respiratory burst, was mediated by IL-8R1. Taken together, our results show that IL-8R1 and IL-8R2 are functionally different. Responses, such as cytosolic free Ca2+ changes and the release of granule enzymes, are mediated through both receptors, whereas the respiratory burst and the activation of phospholipase D depend exclusively on stimulation through IL-8R1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 5' flanking region of the human alpha-globin gene is highly G + C rich and contains multiple copies of the consensus sequence for the Sp1 binding site. We investigated the role of this G + C-rich region in augmenting alpha-globin promoter activity in the presence of the far-upstream alpha-globin enhancer, HS-40. We show that in transiently transfected erythroid cells, deletion of the alpha-globin G + C-rich 5' flanking region has no effect on alpha-globin promoter activity. However, upon stable integration into chromatin, deletion of this region causes a nearly 90% decrease in promoter activity compared with expression from an alpha-globin promoter retaining this region. These results suggest that the alpha-globin G + C-rich 5' flanking region augments alpha-globin promoter activity in a chromatin-dependent manner. We further show that this G + C-rich region is required for the activation of alpha-globin gene expression during erythroid differentiation. Finally, we show by both footprint analysis and functional assays that the ability of the G + C-rich region to increase alpha-globin promoter activity from a stably integrated alpha-globin gene is mediated by its multiple binding sites for the transcription factor Sp1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

K+ channels, which have been linked to regulation of electrogenic solute transport as well as Ca2+ influx, represent a locus in hepatocytes for the concerted actions of hormones that employ Ca2+ and cAMP as intracellular messengers. Despite considerable study, the single-channel basis for synergistic effects of Ca2+ and cAMP on hepatocellular K+ conductance is not well understood. To address this question, patch-clamp recording techniques were applied to a model liver cell line, HTC hepatoma cells. Increasing the cytosolic Ca2+ concentration ([Ca2+]i) in HTC cells, either by activation of purinergic receptors with ATP or by inhibition of intracellular Ca2+ sequestration with thapsigargin, activated low-conductance (9-pS) K+ channels. Studies with excised membrane patches suggested that these channels were directly activated by Ca2+. Exposure of HTC cells to a permeant cAMP analog, 8-(4-chlorophenylthio)-cAMP, also activated 9-pS K+ channels but did not change [Ca2+]i. In excised membrane patches, cAMP-dependent protein kinase (the downstream effector of cAMP) activated K+ channels with conductance and selectivity identical to those of channels activated by Ca2+. In addition, cAMP-dependent protein kinase activated a distinct K+ channel type (5 pS). These data represent the differential regulation of low-conductance K+ channels by signaling pathways mediated by Ca2+ and cAMP. Moreover, since low-conductance Ca(2+)-activated K+ channels have been identified in a variety of cell types, these findings suggest that differential regulation of K+ channels by hormones with distinct signaling pathways may provide a mechanism for hormonal control of solute transport and Ca(2+)-dependent cellular functions in the liver as well as other nonexcitable tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The c-myb protooncogene encodes a highly conserved transcription factor that functions as both an activator and a repressor of transcription. The v-myb oncogenes of E26 leukemia virus and avian myeloblastosis virus encode proteins that are truncated at both the amino and the carboxyl terminus, deleting portions of the c-Myb DNA-binding and negative regulatory domains. This has led to speculation that the deleted regions contain important regulatory sequences. We previously reported that the 42-kDa mitogen-activated protein kinase (p42mapk) phosphorylates chicken and murine c-Myb at multiple sites in the negative regulatory domain in vitro, suggesting that phosphorylation might provide a mechanism to regulate c-Myb function. We now report that three tryptic phosphopeptides derived from in vitro phosphorylated c-Myb comigrate with three tryptic phosphopeptides derived from metabolically labeled c-Myb immunoprecipitated from murine erythroleukemia cells. At least two of these peptides are phosphorylated on serine-528. Replacement of serine-528 with alanine results in a 2- to 7-fold increase in the ability of c-Myb to transactivate a Myb-responsive promoter/reporter gene construct. These findings suggest that phosphorylation serves to regulate c-Myb activity and that loss of this phosphorylation site from the v-Myb proteins may contribute to their transforming potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure of cells to H2O2 mimics many of the effects of treatment of cells with extracellular ligands. Among these is the stimulation of tyrosine phosphorylation. In this study, we show that exposure of cells to H2O2 increases the catalytic activity of the lymphocyte-specific tyrosine protein kinase p56lck (Lck) and induces tyrosine phosphorylation of Lck at Tyr-394, the autophosphorylation site. Using mutant forms of Lck, we found that Tyr-394 is required for H2O2-induced activation of Lck, suggesting that phosphorylation of this site may activate Lck. In addition, H2O2 treatment induced phosphorylation at Tyr-394 in a catalytically inactive mutant of Lck in cells that do not express endogenous Lck. This demonstrates that a kinase other than Lck itself is capable of phosphorylating Lck at the so-called autophosphorylation site and raises the possibility that this as yet unidentified tyrosine protein kinase functions as an activator of Lck. Such an activating enzyme could play an important role in signal transduction in T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The immunophilins of the FK506-binding protein (FKBP) family are intracellular proteins that bind the immunosuppresants FK506 and rapamycin. In this study we show that HMC-1 mast cells sensitized with IgE release FKBP12 upon stimulation with anti-IgE. The release is rapid and not affected by actinomycin D or cycloheximide, suggesting that it is due to exocytosis from a storage compartment. FKBP12 from HMC-1 mast cells exhibits biological activity. When applied extracellularly to human neutrophils, it induces transient changes in the intracellular Ca2+ concentration ([Ca2+]i) due to Ca2+ release from intracellular stores. Inhibition of [Ca2+]i changes by ruthenium red and ryanodine indicates that ryanodine receptor/Ca2+ release channels are involved in FKBP12-induced Ca2+ signaling. Neutrophil activation by mast cell-derived FKBP12 is prevented by complexing FKBP12 with FK506 or rapamycin. These results demonstrate that extracellular FKBP12 functions as a cytokine in cell-to-cell communication. They further suggest a pathophysiological role for FKBP12 as a mediator in immediate or type I hypersensitivity and may have implications for novel therapeutic strategies in the treatment of allergic disorders with FK506 and rapamycin.