38 resultados para Nmda Receptors


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regulation of ion channel function by intracellular processes is fundamental for controlling synaptic signaling and integration in the nervous system. Currents mediated by N-methyl-D-aspartate (NMDA) receptors decline during whole-cell recordings and this may be prevented by ATP. We show here that phosphorylation is necessary to maintain NMDA currents and that the decline is not dependent upon Ca2+. A protein tyrosine phosphatase or a peptide inhibitor of protein tyrosine kinase applied intracellularly caused a decrease in NMDA currents even when ATP was included. On the other hand, pretreating the neurons with a membrane-permeant tyrosine kinase inhibitor occluded the decline in NMDA currents when ATP was omitted. In inside-out patches, applying a protein tyrosine phosphatase to the cytoplasmic face of the patch caused a decrease in probability of opening of NMDA channels. Conversely, open probability was increased by a protein tyrosine phosphatase inhibitor. These results indicate that NMDA channel activity is reduced by a protein tyrosine phosphatase associated with the channel complex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Repetitive stimuli reliably induce long-term potentiation (LTP) of synapses in the upper layers of the granular somatosensory cortex but not the agranular motor cortex of rats. Herein we examine, in these same cortical areas, short-term changes in synaptic strength that occur during the LTP induction period. theta-Burst stimulation produced a strong short-term enhancement of synapses in the granular area but only weak enhancement in the agranular area. The magnitude of enhancement during stimulation was strongly correlated with the magnitude of LTP subsequently expressed. Short-term enhancement was abolished by an antagonist of N-methyl-D-aspartate (NMDA) receptors but remained in the presence of a non-NMDA receptor antagonist. Inhibitory postsynaptic potentials of the granular and agranular areas displayed similar frequency sensitivity, but the frequency sensitivity of NMDA receptor-dependent excitatory postsynaptic potentials differed significantly between areas. We propose that pathway-specific differences in short-term enhancement are due to variations in the frequency dependence of NMDA currents; different capacities for short-term enhancement may explain why repetitive stimulation more readily induces LTP in the somatosensory cortex than in the motor cortex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using an antibody highly specific for D-serine conjugated to glutaraldehyde, we have localized endogenous D-serine in rat brain. Highest levels of D-serine immunoreactivity occur in the gray matter of the cerebral cortex, hippocampus, anterior olfactory nucleus, olfactory tubercle, and amygdala. Localizations of D-serine immunoreactivity correlate closely with those of D-serine binding to the glycine modulatory site of the N-methyl-D-aspartate (NMDA) receptor as visualized by autoradiography and are inversely correlated to the presence of D-amino acid oxidase. D-Serine is enriched in process-bearing glial cells in neuropil with the morphology of protoplasmic astrocytes. In glial cultures of rat cerebral cortex, D-serine is enriched in type 2 astrocytes. The release of D-serine from these cultures is stimulated by agonists of non-NMDA glutamate receptors, suggesting a mechanism by which astrocyte-derived D-serine could modulate neurotransmission. D-Serine appears to be the endogenous ligand for the glycine site of NMDA receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of the two metal-ion chelators EDTA and citrate on the action of N-methyl-D-aspartate (NMDA) receptors was investigated by use of cultured mouse cerebellar granule neurons and Xenopus oocytes, respectively, to monitor either NMDA-evoked transmitter release or membrane currents. Transmitter release from the glutamatergic neurons was determined by superfusion of the cells after preloading with the glutamate analogue D-[3H]aspartate. The oocytes were injected with mRNA isolated from mouse cerebellum and, after incubation to allow translation to occur, currents mediated by NMDA were recorded electrophysiologically by voltage clamp at a holding potential of -80 mV. It was found that citrate as well as EDTA could attenuate the inhibitory action of Zn2+ on NMDA receptor-mediated transmitter release from the neurons and membrane currents in the oocytes. These effects were specifically related to the NMDA receptor, since the NMDA receptor antagonist MK-801 abolished the action and no effects of Zn2+ and its chelators were observed when kainate was used to selectively activate non-NMDA receptors. Since it was additionally demonstrated that citrate (and EDTA) preferentially chelated Zn2+ rather than Ca2+, the present findings strongly suggest that endogenous citrate released specifically from astrocytes into the extracellular space in the brain may function as a modulator of NMDA receptor activity. This is yet another example of astrocytic influence on neuronal activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In adult forebrain, nerve growth factor (NGF) influences neuronal maintenance and axon sprouting and is neuroprotective in several injury models through mechanisms that are incompletely understood. Most NGF signaling is thought to occur after internalization and retrograde transport of trkA receptor and be mediated through the nucleus. However, NGF expression in hippocampus is rapidly and sensitively regulated by synaptic activity, suggesting that NGF exerts local effects more dynamically than possible through signaling requiring retrograde transport to distant afferent neurons. Interactions have been reported between NGF and nitric oxide (NO). Because NO affects both neural plasticity and degeneration, and trk receptors can mediate signaling within minutes, we hypothesized that NGF might rapidly modulate NO production. Using in vivo microdialysis we measured conversion of l-[14C]arginine to l-[14C]citrulline as an accurate reflection of NO synthase (NOS) activity in adult rat hippocampus. NGF significantly reduced NOS activity to 61% of basal levels within 20 min of onset of delivery and maintained NOS activity at less than 50% of baseline throughout 3 hr of delivery. This effect did not occur with control protein (cytochrome c) and was not mediated by an effect of NGF on glutamate levels. In addition, simultaneous delivery of NGF prevented significant increases in NOS activity triggered by the glutamate receptor agonists N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Rapid suppression by NGF of basal and glutamate-stimulated NOS activity may regulate neuromodulatory functions of NO or protect neurons from NO toxicity and suggests a novel mechanism for rapidly mediating functions of NGF and other neurotrophins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin potentiates N-methyl-d-aspartate receptors (NMDARs) in neurons and Xenopus oocytes expressing recombinant NMDARs. The present study shows that insulin induced (i) an increase in channel number times open probability (nPo) in outside-out patches excised from Xenopus oocytes, with no change in mean open time, unitary conductance, or reversal potential, indicating an increase in n and/or Po; (ii) an increase in charge transfer during block of NMDA-elicited currents by the open channel blocker MK-801, indicating increased number of functional NMDARs in the cell membrane with no change in Po; and (iii) increased NR1 surface expression, as indicated by Western blot analysis of surface proteins. Botulinum neurotoxin A greatly reduced insulin potentiation, indicating that insertion of new receptors occurs via SNARE-dependent exocytosis. Thus, insulin potentiation occurs via delivery of new channels to the plasma membrane. NMDARs assembled from mutant subunits lacking all known sites of tyrosine and serine/threonine phosphorylation in their carboxyl-terminal tails exhibited robust insulin potentiation, suggesting that insulin potentiation does not require direct phosphorylation of NMDAR subunits. Because insulin and insulin receptors are localized to glutamatergic synapses in the hippocampus, insulin-regulated trafficking of NMDARs may play a role in synaptic transmission and plasticity, including long-term potentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutamate release activates multiple receptors that interact with each other and thus determine the response of the cell. Exploring these interactions is critical to developing an understanding of the functional consequences of synaptic transmission. Activation of metabotropic glutamate receptors (mGluRs) inhibits N-methyl-D-aspartate (NMDA)-evoked responses measured electrophysiologically in neostriatal slices. The present study examines the functional consequences of this regulation using infrared differential interference contrast videomicroscopy to measure and characterize glutamate receptor-induced cell swelling in a neostriatal brain slice preparation. This swelling is, in many cases, a prelude to necrotic cell death and the dye trypan blue was used to confirm that swelling can result in the death of neostriatal cells. Activation of mGluRs by the agonist 1-aminocyclopentane-1,3-dicarboxylic acid (tACPD) inhibited NMDA but not amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate-induced swelling. This regulation was cell-type specific as tACPD did not alter NMDA-induced swelling in pyramidal cells of the hippocampus. Importantly, these findings could be extended to in vivo preparations. Pretreatment with tACPD limited the size of lesions and associated behavioral deficits induced by intrastriatal administration of the NMDA receptor agonist quinolinic acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

N-Methyl-D-aspartate (NMDA, 200 microM) evokes the release of [3H]norepinephrine ([3H]NE) from preloaded hippocampal slices. This effect is potentiated by dehydroepiandrosterone sulfate (DHEA S), whereas it is inhibited by pregnenolone sulfate (PREG S) and the high-affinity sigma inverse agonist 1,3-di(2-tolyl)guanidine, at concentrations of > or = 100 nM. Neither 3 alpha-hydroxy-5 alpha-pregnan-20-one nor its sulfate ester modified NMDA-evoked [3H]NE overflow. The sigma antagonists haloperidol and 1-[2-(3,4-dichlorophenyl)-ethyl]-4-methylpiperazine, although inactive by themselves, completely prevented the effects of DHEA S, PREG S, and 1,3-di(2-tolyl)guanidine on NMDA-evoked [3H]NE release. Progesterone (100 nM) mimicked the antagonistic effect of haloperidol and 1-[2-(3,4-dichlorophenyl)ethyl]-4-methyl-piperazine. These results indicate that the tested steroid sulfate esters differentially affected the NMDA response in vitro and suggest that DHEA S acts as a sigma agonist, that PREG S acts as a sigma inverse agonist, and that progesterone may act as a sigma antagonist. Pertussis toxin, which inactivates the Gi/o types of guanine nucleotide-binding protein (Gi/o protein) function, suppresses both effects of DHEA S and PREG S. Since sigma 1 but not sigma 2 receptors are coupled to Gi/o proteins, the present results suggest that DHEA S and PREG S control the NMDA response via sigma 1 receptors.