98 resultados para NUCLEAR FACTOR KAPPA-B
Resumo:
The human inducible nitric oxide synthase (hiNOS) gene is expressed in several disease states and is also important in the normal immune response. Previously, we described a cytokine-responsive enhancer between −5.2 and −6.1 kb in the 5′-flanking hiNOS promoter DNA, which contains multiple nuclear factor κβ (NF-κB) elements. Here, we describe the role of the IFN-Jak kinase-Stat (signal transducer and activator of transcription) 1 pathway for regulation of hiNOS gene transcription. In A549 human lung epithelial cells, a combination of cytokines tumor necrosis factor-α, interleukin-1β, and IFN-γ (TNF-α, IL-1β, and IFN-γ) function synergistically for induction of hiNOS transcription. Pharmacological inhibitors of Jak2 kinase inhibit cytokine-induced Stat 1 DNA-binding and hiNOS gene expression. Expression of a dominant-negative mutant Stat 1 inhibits cytokine-induced hiNOS reporter expression. Site-directed mutagenesis of a cis-acting DNA element at −5.8 kb in the hiNOS promoter identifies a bifunctional NF-κB/Stat 1 motif. In contrast, gel shift assays indicate that only Stat 1 binds to the DNA element at −5.2 kb in the hiNOS promoter. Interestingly, Stat 1 is repressive to basal and stimulated iNOS mRNA expression in 2fTGH human fibroblasts, which are refractory to iNOS induction. Overexpression of NF-κB activates hiNOS promoter–reporter expression in Stat 1 mutant fibroblasts, but not in the wild type, suggesting that Stat 1 inhibits NF-κB function in these cells. These results indicate that both Stat 1 and NF-κB are important in the regulation of hiNOS transcription by cytokines in a complex and cell type-specific manner.
Resumo:
We show that the binding of Rel p50 and p52 homodimers at sites within the transcriptional initiation region of HIV-1 provides for their ability to interact with other proteins that bind the initiator. The binding of one such protein, the initiator protein TFII-I, to the initiation region of HIV-1 is augmented in the presence of Rel p50 and Rel p52 homodimers. Consistent with this, in vitro Rel homodimers potentiate HIV-1 transcription in a manner dependent upon TFII-I. The findings suggest that Rel dimers may regulate HIV-1 transcription in two ways. First, through binding at the kappa B enhancer sites at (-104 to -80), NF-kappa B p50:p65 participates in classical transcriptional activation. Second, Rel dimers such as p50 or p52 might bind at initiator sequences to regulate the de novo binding of components of certain preinitiation complexes. These findings, and the existence of Rel binding sites at the initiators of other genes, suggest roles for Rel proteins in early events determining transcriptional control.
Resumo:
Tissue-specific transcription is regulated in part by cell type-restricted proteins that bind to defined sequences in target genes. The DNA-binding domain of these proteins is often evolutionarily conserved. On this basis, liver-enriched transcription factors were classified into five families. We describe here the mammalian prototype of a sixth family, which we therefore call hepatocyte nuclear factor 6 (HNF-6). It activates the promoter of a gene involved in the control of glucose metabolism. HNF-6 contains two different DNA-binding domains. One of these corresponds to a novel type of homeodomain. The other is homologous to the Drosophila cut domain. A similar bipartite sequence is coded by the genome of Caenorhabditis elegans.
Resumo:
Anergy is a major mechanism to ensure antigen-specific tolerance in T lymphocytes in the adult. In vivo, anergy has mainly been studied at the cellular level. In this study, we used the T-cell-activating superantigen staphylococcal enterotoxin A (SEA) to investigate molecular mechanisms of T-lymphocyte anergy in vivo. Injection of SEA to adult mice activates CD4+ T cells expressing certain T-cell receptor (TCR) variable region beta-chain families and induces strong and rapid production of interleukin 2 (IL-2). In contrast, repeated injections of SEA cause CD4+ T-cell deletion and anergy in the remaining CD4+ T cells, characterized by reduced expression of IL-2 at mRNA and protein levels. We analyzed expression of AP-1, NF-kappa B, NF-AT, and octamer binding transcription factors, which are known to be involved in the regulation of IL-2 gene promoter activity. Large amounts of AP-1 and NF-kappa B and significant quantities of NF-AT were induced in SEA-activated CD4+ spleen T cells, whereas Oct-1 and Oct-2 DNA binding activity was similar in both resting and activated T cells. In contrast, anergic CD4+ T cells contained severely reduced levels of AP-1 and Fos/Jun-containing NF-AT complexes but expressed significant amounts of NF-kappa B and Oct binding proteins after SEA stimulation. Resolution of the NF-kappa B complex demonstrated predominant expression of p50-p65 heterodimers in activated CD4+ T cells, while anergic cells mainly expressed the transcriptionally inactive p50 homodimer. These alterations of transcription factors are likely to be responsible for repression of IL-2 in anergic T cells.
Resumo:
Hepatocyte nuclear factor 4 (HNF-4) is a prominent member of the family of liver-enriched transcription factors, playing a role in the expression of a large number of liver-specific genes. We report here that HNF-4 is a phosphoprotein and that phosphorylation at tyrosine residue(s) is important for its DNA-binding activity and, consequently, for its transactivation potential both in cell-free systems and in cultured cells. Tyrosine phosphorylation did not affect the transport of HNF-4 from the cytoplasm to the nucleus but had a dramatic effect on its subnuclear localization. HNF-4 was concentrated in distinct nuclear compartments, as evidenced by in situ immunofluorescence and electron microscopy. This compartmentalization disappeared when tyrosine phosphorylation was inhibited by genistein. The correlation between the intranuclear distribution of HNF-4 and its ability to activate endogenous target genes demonstrates a phosphorylation signal-dependent pathway in the regulation of transcription factor activity.
Resumo:
The NF-kappa B/Rel proteins are sequestered in the cytoplasm in association with the phosphorylated form of I kappa B alpha. Upon induction with a wide variety of agents, the activity of NF-kappa B/Rel proteins is preceded by the rapid degradation of I kappa B alpha protein. We report the identification and partial purification of a cellular kinase from unstimulated or stimulated murine cells, which specifically phosphorylates the C terminus of I kappa B alpha. There are several consensus sites for casein kinase II (CKII) in the C-terminal region of I kappa B alpha. Additionally, the activity of the cellular kinase is blocked by antibodies against the alpha subunit of CKII. No phosphorylation of the C-terminal region of I kappa B alpha can be detected if the five possible serine and threonine residues that can be phosphorylated by CKII are mutated to alanine. A two-dimensional tryptic phosphopeptide map of I kappa B alpha from unstimulated cells was identical to that obtained by in vitro phosphorylation of I kappa B alpha with the partially purified cellular kinase. We propose that constitutive phosphorylation of I kappa B alpha is carried out by CKII.
Resumo:
The developmental stage- and erythroid lineage-specific activation of the human embryonic zeta- and fetal/adult alpha-globin genes is controlled by an upstream regulatory element [hypersensitive site (HS)-40] with locus control region properties, a process mediated by multiple nuclear factor-DNA complexes. In vitro DNase I protection experiments of the two G+C-rich, adult alpha-globin promoters have revealed a number of binding sites for nuclear factors that are common to HeLa and K-562 extracts. However, genomic footprinting analysis has demonstrated that only a subset of these sites, clustered between -130 and +1, is occupied in an erythroid tissue-specific manner. The function of these in vivo-occupied motifs of the alpha-globin promoters, as well as those previously mapped in the HS-40 region, is assayed by site-directed mutagenesis and transient expression in embryonic/fetal erythroid K-562 cells. These studies, together with our expression data on the human embryonic zeta-globin promoter, provide a comprehensive view of the functional roles of individual nuclear factor-DNA complexes in the final stages of transcriptional activation of the human alpha-like globin promoters by the HS-40 element.
Resumo:
In this study we investigate the mRNA expression of inhibitory factor κBα (IκBα) in cells of the rat brain induced by an intraperitoneal (i.p.) injection of lipopolysaccharide (LPS). IκB controls the activity of nuclear factor κB, which regulates the transcription of many immune signal molecules. The detection of IκB induction, therefore, would reveal the extent and the cellular location of brain-derived immune molecules in response to peripheral immune challenges. Low levels of IκBα mRNA were found in the large blood vessels and in circumventricular organs (CVOs) of saline-injected control animals. After an i.p. LPS injection (2.5 mg/kg), dramatic induction of IκBα mRNA occurred in four spatio-temporal patterns. Induced signals were first detected at 0.5 hr in the lumen of large blood vessels and in blood vessels of the choroid plexus and CVOs. Second, at 1–2 hr, labeling dramatically increased in the CVOs and choroid plexus and spread to small vascular and glial cells throughout the entire brain; these responses peaked at 2 hr and declined thereafter. Third, cells of the meninges became activated at 2 hr and persisted until 12 hr after the LPS injection. Finally, only at 12 hr, induced signals were present in ventricular ependyma. Thus, IκBα mRNA is induced in brain after peripheral LPS injection, beginning in cells lining the blood side of the blood–brain barrier and progressing to cells inside brain. The spatiotemporal patterns suggest that cells of the blood–brain barrier synthesize immune signal molecules to activate cells inside the central nervous system in response to peripheral LPS. The cerebrospinal fluid appears to be a conduit for these signal molecules.
Resumo:
Evidence from postmortem studies suggest an involvement of oxidative stress in the degeneration of dopaminergic neurons in Parkinson disease (PD) that have recently been shown to die by apoptosis, but the relationship between oxidative stress and apoptosis has not yet been elucidated. Activation of the transcription factor NF-κB is associated with oxidative stress-induced apoptosis in several nonneuronal in vitro models. To investigate whether it may play a role in PD, we looked for the translocation of NF-κB from the cytoplasm to the nucleus, evidence of its activation, in melanized neurons in the mesencephalon of postmortem human brain from five patients with idiopathic PD and seven matched control subjects. In PD patients, the proportion of dopaminergic neurons with immunoreactive NF-κB in their nuclei was more than 70-fold that in control subjects. A possible relationship between the nuclear localization of NF-κB in mesencephalic neurons of PD patients and oxidative stress in such neurons has been shown in vitro with primary cultures of rat mesencephalon, where translocation of NF-κB is preceded by a transient production of free radicals during apoptosis induced by activation of the sphingomyelin-dependent signaling pathway with C2-ceramide. The data suggest that this oxidant-mediated apoptogenic transduction pathway may play a role in the mechanism of neuronal death in PD.
Resumo:
Hepatotropism is a prominent feature of hepatitis B virus (HBV) infection. Cell lines of nonhepatic origin do not independently support HBV replication. Here, we show that the nuclear hormone receptors, hepatocyte nuclear factor 4 and retinoid X receptor α plus peroxisome proliferator-activated receptor α, support HBV replication in nonhepatic cells by controlling pregenomic RNA synthesis, indicating these liver-enriched transcription factors control a unique molecular switch restricting viral tropism. In contrast, hepatocyte nuclear factor 3 antagonizes nuclear hormone receptor-mediated viral replication, demonstrating distinct regulatory roles for these liver-enriched transcription factors.
Resumo:
The nuclear import of the nuclear factor of activated T cells (NFAT)-family transcription factors is initiated by the protein phosphatase calcineurin. Here we identify a regulatory region of NFAT1, N terminal to the DNA-binding domain, that controls nuclear import of NFAT1. The regulatory region of NFAT1 binds directly to calcineurin, is a substrate for calcineurin in vitro, and shows regulated subcellular localization identical to that of full-length NFAT1. The corresponding region of NFATc likewise binds calcineurin, suggesting that the efficient activation of NFAT1 and NFATc by calcineurin reflects a specific targeting of the phosphatase to these proteins. The presence in other NFAT-family transcription factors of several sequence motifs from the regulatory region of NFAT1, including its probable nuclear localization sequence, indicates that a conserved protein domain may control nuclear import of all NFAT proteins.
Resumo:
Tumor necrosis factor (TNF) mediates a wide variety of disease states including septic shock, acute and chronic inflammation, and cachexia. Recently, a multivalent guanylhydrazone (CNI-1493) developed as an inhibitor of macrophage activation was shown to suppress TNF production and protect against tissue inflammation and endotoxin lethality [Bianchi, M., Ulrich, P., Bloom, O., Meistrell, M., Zimmerman, G. A., Schmidtmayerova, H., Bukrinsky, M., Donnelley, T., Bucala, R., Sherry, B., Manogue, K. R., Tortolani, A. J., Cerami, A. & Tracey, K. J. (1995) Mol. Med. 1, 254-266, and Bianchi, M., Bloom, O., Raabe, T., Cohen, P. S., Chesney, J., Sherry, B., Schmidtmayerova, H., Zhang, X., Bukrinsky, M., Ulrich, P., Cerami, A. & Tracey, J. (1996) J. Exp. Med., in press]. We have now elucidated the mechanism by which CNI-1493 inhibits macrophage TNF synthesis and show here that it acts through suppression of TNF translation efficiency. CNI-1493 blocked neither the lipopolysaccharide (LPS)-induced increases in the expression of TNF mRNA nor the translocation of nuclear factor NF-kappa B to the nucleus in macrophages activated by 15 min of LPS stimulation, indicating that CNI-1493 does not interfere with early NF-kappa B-mediated transcriptional regulation of TNF. However, synthesis of the 26-kDa membrane form of TNF was effectively blocked by CNI-1493. Further evidence for the translational suppression of TNF is given by experiments using chloram-phenicol acetyltransferase (CAT) constructs containing elements of the TNF gene that are involved in TNF translational regulation. Both the 5' and 3' untranslated regions of the TNF gene were required to elicit maximal translational suppression by CNI-1493. Identification of the molecular target through which CNI-1493 inhibits TNF translation should provide insight into the regulation of macrophage activation and mechanisms of inflammation.
Resumo:
The possibility that bacteria may have evolved strategies to overcome host cell apoptosis was explored by using Rickettsia rickettsii, an obligate intracellular Gram-negative bacteria that is the etiologic agent of Rocky Mountain spotted fever. The vascular endothelial cell, the primary target cell during in vivo infection, exhibits no evidence of apoptosis during natural infection and is maintained for a sufficient time to allow replication and cell-to-cell spread prior to eventual death due to necrotic damage. Prior work in our laboratory demonstrated that R. rickettsii infection activates the transcription factor NF-κB and alters expression of several genes under its control. However, when R. rickettsii-induced activation of NF-κB was inhibited, apoptosis of infected but not uninfected endothelial cells rapidly ensued. In addition, human embryonic fibroblasts stably transfected with a superrepressor mutant inhibitory subunit IκB that rendered NF-κB inactivatable also underwent apoptosis when infected, whereas infected wild-type human embryonic fibroblasts survived. R. rickettsii, therefore, appeared to inhibit host cell apoptosis via a mechanism dependent on NF-κB activation. Apoptotic nuclear changes correlated with presence of intracellular organisms and thus this previously unrecognized proapoptotic signal, masked by concomitant NF-κB activation, likely required intracellular infection. Our studies demonstrate that a bacterial organism can exert an antiapoptotic effect, thus modulating the host cell’s apoptotic response to its own advantage by potentially allowing the host cell to remain as a site of infection.
Resumo:
We examined the mechanisms by which two different types of photonic radiation, short wavelength UV (UV-C) and γ radiation, activate transcription factor NF-κB. Exposure of mammalian cells to either form of radiation resulted in induction with similar kinetics of NF-κB DNA binding activity, nuclear translocation of its p65(RelA) subunit, and degradation of the major NF-κB inhibitor IκBα. In both cases, induction of NF-κB activity was attenuated by proteasome inhibitors and a mutation in ubiquitin-activating enzyme, suggesting that both UV-C and γ radiation induce degradation of IκBs by means of the ubiquitin/proteasome pathway. However, although the induction of IκBα degradation by γ rays was dependent on its phosphorylation at Ser-32 and Ser-36, UV-C-induced IκBα degradation was not dependent on phosphorylation of these residues. Even the “super repressor” IκBα mutant, which contains alanines at positions 32 and 36, was still susceptible to UV-C-induced degradation. Correspondingly, we found that γ radiation led to activation of IKK, the protein kinase that phosphorylates IκBα at Ser-32 and Ser-36, whereas UV-C radiation did not. Furthermore, expression of a catalytically inactive IKKβ mutant prevented NF-κB activation by γ radiation, but not by UV-C. These results indicate that γ radiation and UV-C activate NF-κB through two distinct mechanisms.