265 resultados para N-terminal Domain


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent studies demonstrated that a synthetic fusion peptide of HIV-1 self-associates in phospholipid membranes and inhibits HIV-1 envelope glycoprotein-mediated cell fusion, presumably by interacting with the N-terminal domain of gp41 and forming inactive heteroaggregates [Kliger, Y., Aharoni, A., Rapaport, D., Jones, P., Blumenthal, R. & Shai, Y. (1997) J. Biol. Chem. 272, 13496–13505]. Here, we show that a synthetic all d-amino acid peptide corresponding to the N-terminal sequence of HIV-1 gp41 (D-WT) of HIV-1 associates with its enantiomeric wild-type fusion (WT) peptide in the membrane and inhibits cell fusion mediated by the HIV-1 envelope glycoprotein. D-WT does not inhibit cell fusion mediated by the HIV-2 envelope glycoprotein. WT and D-WT are equally potent in inducing membrane fusion. D-WT peptide but not WT peptide is resistant to proteolytic digestion. Structural analysis showed that the CD spectra of D-WT in trifluoroethanol/water is a mirror image of that of WT, and attenuated total reflectance–fourier transform infrared spectroscopy revealed similar structures and orientation for the two enantiomers in the membrane. The results reveal that the chirality of the synthetic peptide corresponding to the HIV-1 gp41 N-terminal sequence does not play a role in liposome fusion and that the peptides’ chirality is not necessarily required for peptide–peptide interaction within the membrane environment. Furthermore, studies along these lines may provide criteria to design protease-resistant therapeutic agents against HIV and other viruses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Myosin I heavy chain kinase from Acanthamoeba castellanii is activated in vitro by autophosphorylation (8–10 mol of P per mol). The catalytically active C-terminal domain produced by trypsin cleavage of the phosphorylated kinase contains 2–3 mol of P per mol. However, the catalytic domain expressed in a baculovirus–insect cell system is fully active as isolated without autophosphorylation in vitro. We now show that the expressed catalytic domain is inactivated by incubation with acid phosphatase and regains activity upon autophosphorylation. The state of phosphorylation of all of the hydroxyamino acids in the catalytic domain were determined by mass spectrometry of unfractionated protease digests. Ser-627 was phosphorylated in the active, expressed catalytic domain, lost its phosphate when the protein was incubated with phosphatase, and was rephosphorylated when the dephosphorylated protein was incubated with ATP. No other residue was significantly phosphorylated in any of the three samples. Thus, phosphorylation of Ser-627, which is in the same position as the Ser and Thr residues that are phosphorylated in many other kinases, is necessary and sufficient for full activity of the catalytic domain. Ser-627 is also phosphorylated when full-length, native kinase is activated by autophosphorylation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Activation of the cascade of proteolytic caspases has been identified as the final common pathway of apoptosis in diverse biological systems. We have isolated a gene, termed MRIT, that possesses overall sequence homology to FLICE (MACH), a large prodomain caspase that links the aggregated complex of the death domain receptors of the tumor necrosis factor receptor family to downstream caspases. However, unlike FLICE, the C-terminal domain of MRIT lacks the caspase catalytic consensus sequence QAC(R/Q)G. Nonetheless MRIT activates caspase-dependent death. Using yeast two-hybrid assays, we demonstrate that MRIT associates with caspases possessing large and small prodomains (FLICE, and CPP32/YAMA), as well as with the adaptor molecule FADD. In addition, MRIT simultaneously and independently interacts with BclXL and FLICE in mammalian cells. Thus, MRIT is a mammalian protein that interacts simultaneously with both caspases and a Bcl-2 family member.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The LAZ3/BCL6 (lymphoma-associated zinc finger 3/B cell lymphomas 6) gene frequently is altered in non-Hodgkin lymphomas. It encodes a sequence-specific DNA binding transcriptional repressor that contains a conserved N-terminal domain, termed BTB/POZ (bric-à-brac tramtrack broad complex/pox viruses and zinc fingers). Using a yeast two-hybrid screen, we show here that the LAZ3/BCL6 BTB/POZ domain interacts with the SMRT (silencing mediator of retinoid and thyroid receptor) protein. SMRT originally was identified as a corepressor of unliganded retinoic acid and thyroid receptors and forms a repressive complex with a mammalian homolog of the yeast transcriptional repressor SIN3 and the HDAC-1 histone deacetylase. Protein binding assays demonstrate that the LAZ3/BCL6 BTB/POZ domain directly interacts with SMRT in vitro. Furthermore, DNA-bound LAZ3/BCL6 recruits SMRT in vivo, and both overexpressed proteins completely colocalize in nuclear dots. Finally, overexpression of SMRT enhances the LAZ3/BCL6-mediated repression. These results define SMRT as a corepressor of LAZ3/BCL6 and suggest that LAZ3/BCL6 and nuclear hormone receptors repress transcription through shared mechanisms involving SMRT recruitment and histone deacetylation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The host response to Gram-negative bacterial infection is influenced by two homologous lipopolysaccharide (LPS)-interactive proteins, LPS-binding protein (LBP) and the bacteridical/permeability-increasing protein (BPI). Both proteins bind LPS via their N-terminal domains but produce profoundly different effects: BPI and a bioactive N-terminal fragment BPI-21 exert a selective and potent antibacterial effect upon Gram-negative bacteria and suppress LPS bioactivity whereas LBP is not toxic toward Gram-negative bacteria and potentiates LPS bioactivity. The latter effect of LBP requires the C-terminal domain for delivery of LPS to CD14, so we postulated that the C-terminal region of BPI may serve a similar delivery function but to distinct targets. LBP, holoBPI, BPI-21, and LBP/BPI chimeras were compared for their ability to promote uptake by human phagocytes of an encapsulated, phagocytosis-resistant strain of Escherichia coli. We show that only bacteria preincubated with holoBPI are ingested by neutrophils and monocytes. These findings suggest that, when extracellular holoBPI is bound via its N-terminal domain to Gram-negative bacteria, the C-terminal domain promotes bacterial attachment to neutrophils and monocytes, leading to phagocytosis. Therefore, analogous to the role of the C-terminal domain of LBP in delivery of LPS to CD14, the C-terminal domain of BPI may fulfill a similar function in BPI-specific disposal pathways for Gram-negative bacteria.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Terminal deoxynucleotidyl transferase (TdT) catalyzes the addition of nucleotides at the junctions of rearranging Ig and T cell receptor gene segments, thereby generating antigen receptor diversity. Ku is a heterodimeric protein composed of 70- and 86-kDa subunits that binds DNA ends and is required for V(D)J recombination and DNA double-strand break (DSB) repair. We provide evidence for a direct interaction between TdT and Ku proteins. Studies with a baculovirus expression system show that TdT can interact specifically with each of the Ku subunits and with the heterodimer. The interaction between Ku and TdT is also observed in pre-T cells with endogenously expressed proteins. The protein–protein interaction is DNA independent and occurs at physiological salt concentrations. Deletion mutagenesis experiments reveal that the N-terminal region of TdT (131 amino acids) is essential for interaction with the Ku heterodimer. This region, although not important for TdT polymerization activity, contains a BRCA1 C-terminal domain that has been shown to mediate interactions of proteins involved in DNA repair. The induction of DSBs in Cos-7 cells transfected with a human TdT expression construct resulted in the appearance of discrete nuclear foci in which TdT and Ku colocalize. The physical association of TdT with Ku suggests a possible mechanism by which TdT is recruited to the sites of DSBs such as V(D)J recombination intermediates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The myofibrils of cross-striated muscle fibers contain in their M bands cytoskeletal proteins whose main function seems to be the stabilization of the three-dimensional arrangement of thick filaments. We identified two immunoglobin domains (Mp2–Mp3) of M-protein as a site binding to the central region of light meromyosin. This binding is regulated in vitro by phosphorylation of a single serine residue (Ser76) in the immediately adjacent amino-terminal domain Mp1. M-protein phosphorylation by cAMP-dependent kinase A inhibits binding to myosin LMM. Transient transfection studies of cultured cells revealed that the myosin-binding site seems involved in the targeting of M-protein to its location in the myofibril. Using the same method, a second myofibril-binding site was uncovered in domains Mp9–Mp13. These results support the view that specific phosphorylation events could be also important for the control of sarcomeric M band formation and remodeling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In complex with FKBP12, the immunosuppressant rapamycin binds to and inhibits the yeast TOR1 and TOR2 proteins and the mammalian homologue mTOR/FRAP/RAFT1. The TOR proteins promote cell cycle progression in yeast and human cells by regulating translation and polarization of the actin cytoskeleton. A C-terminal domain of the TOR proteins shares identity with protein and lipid kinases, but only one substrate (PHAS-I), and no regulators of the TOR-signaling cascade have been identified. We report here that yeast TOR1 has an intrinsic protein kinase activity capable of phosphorylating PHAS-1, and this activity is abolished by an active site mutation and inhibited by FKBP12-rapamycin or wortmannin. We find that an intact TOR1 kinase domain is essential for TOR1 functions in yeast. Overexpression of a TOR1 kinase-inactive mutant, or of a central region of the TOR proteins distinct from the FRB and kinase domains, was toxic in yeast, and overexpression of wild-type TOR1 suppressed this toxic effect. Expression of the TOR-toxic domain leads to a G1 cell cycle arrest, consistent with an inhibition of TOR function in translation. Overexpression of the PLC1 gene, which encodes the yeast phospholipase C homologue, suppressed growth inhibition by the TOR-toxic domains. In conclusion, our findings identify a toxic effector domain of the TOR proteins that may interact with substrates or regulators of the TOR kinase cascade and that shares sequence identity with other PIK family members, including ATR, Rad3, Mei-41, and ATM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rb protein inhibits both cell cycle progression and apoptosis. Interaction of specific cellular proteins, including E2F1, with Rb C-terminal domains mediates cell cycle regulation. In contrast, the nuclear N5 protein associates with an Rb N-terminal domain with unknown function. The N5 protein contains a region of sequence similarity to the death domain of proteins involved in apoptotic signaling. We demonstrate here that forced N5 expression potently induces apoptosis in several tumor cell lines. Mutation of conserved residues within the death domain homology compromise N5-induced apoptosis, suggesting that it is required for normal function. Endogenous N5 protein is specifically altered in apoptotic cells treated with ionizing radiation. Furthermore, dominant interfering death domain mutants compromise cellular responses to ionizing radiation. Finally, physical association with Rb protein inhibits N5-induced apoptosis. We propose that N5 protein plays a role in the regulation of apoptosis and that Rb directly coordinates cell proliferation and apoptosis by binding specific proteins involved in each process through distinct protein binding domains.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

STATs are activated by tyrosine phosphorylation on cytokine stimulation. A tyrosine-phosphorylated STAT forms a functional dimer through reciprocal Src homology 2 domain (SH2)–phosphotyrosyl peptide interactions. IFN treatment induces the association of PIAS1 and Stat1, which results in the inhibition of Stat1-mediated gene activation. The molecular basis of the cytokine-dependent PIAS1–Stat1 interaction has not been understood. We report here that a region near the COOH terminus of PIAS1 (amino acids 392–541) directly interacts with the NH2-terminal domain of Stat1 (amino acids 1–191). A mutant PIAS1 lacking the Stat1-interacting domain failed to inhibit Stat1-mediated gene activation. By using a modified yeast two-hybrid assay, we demonstrated that PIAS1 specifically interacts with the Stat1 dimer, but not tyrosine-phosphorylated or -unphosphorylated Stat1 monomer. In addition, whereas the NH2-terminal region of PIAS1 does not interact with Stat1, it serves as a modulatory domain by preventing the interaction of the COOH-terminal domain of PIAS1 with the Stat1 monomer. Thus, the cytokine-induced PIAS1–Stat1 interaction is mediated through the specific recognition of the dimeric form of Stat1 by PIAS1.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cytoplasmic sequestration of wild-type p53 protein occurs in a subset of primary human tumors including breast cancer, colon cancer, and neuroblastoma (NB). The sequestered p53 localizes to punctate cytoplasmic structures that represent large protein aggregates. One functional consequence of this blocked nuclear access is impairment of the p53-mediated G1 checkpoint after DNA damage. Here we show that cytoplasmic p53 from NB cells is incompetent for specific DNA binding, probably due to its sequestration. Importantly, the C-terminal domain of sequestered p53 is masked, as indicated by the failure of a C-terminally directed antibody to detect p53 in these structures. To determine (i) which domain of p53 is involved in the aggregation and (ii) whether this phenotype is potentially reversible, we generated stable NB sublines that coexpress the soluble C-terminal mouse p53 peptide DD1 (amino acids 302–390). A dramatic phenotypic reversion occurred in five of five lines. The presence of DD1 blocked the sequestration of wild-type p53 and relocated it to the nucleus, where it accumulated. The nuclear translocation is due to shuttling of wild-type p53 by heteroligomerization to DD1, as shown by coimmunoprecipitation. As expected, the nuclear heterocomplexes were functionally inactive, since DD1 is a dominant negative inhibitor of wild-type p53. In summary, we show that nuclear access of p53 can be restored in NB cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Insolubility of full-length HIV-1 integrase (IN) limited previous structure analyses to individual domains. By introducing five point mutations, we engineered a more soluble IN that allowed us to generate multidomain HIV-1 IN crystals. The first multidomain HIV-1 IN structure is reported. It incorporates the catalytic core and C-terminal domains (residues 52–288). The structure resolved to 2.8 Å is a Y-shaped dimer. Within the dimer, the catalytic core domains form the only dimer interface, and the C-terminal domains are located 55 Å apart. A 26-aa α-helix, α6, links the C-terminal domain to the catalytic core. A kink in one of the two α6 helices occurs near a known proteolytic site, suggesting that it may act as a flexible elbow to reorient the domains during the integration process. Two proteins that bind DNA in a sequence-independent manner are structurally homologous to the HIV-1 IN C-terminal domain, suggesting a similar protein–DNA interaction in which the IN C-terminal domain may serve to bind, bend, and orient viral DNA during integration. A strip of positively charged amino acids contributed by both monomers emerges from each active site of the dimer, suggesting a minimally dimeric platform for binding each viral DNA end. The crystal structure of the isolated catalytic core domain (residues 52–210), independently determined at 1.6-Å resolution, is identical to the core domain within the two-domain 52–288 structure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The signaling pathways by which the phytochrome (phy) family of photoreceptors transmits sensory information to light-regulated genes remain to be fully defined. Evidence for a relatively direct pathway has been provided by the binding of one member of the family, phyB, to a promoter-element-bound, basic helix–loop–helix protein, PIF3, specifically upon light-induced conversion of the photoreceptor molecule to its biologically active conformer (Pfr). Here, we show that phyA also binds selectively and reversibly to PIF3 upon photoconversion to Pfr, but that the apparent affinity of PIF3 for phyA is 10-fold lower than for phyB. This result is consistent with previous in vivo data from PIF3-deficient Arabidopsis, indicating that PIF3 has a major role in phyB signaling, but a more minor role in phyA signaling. We also show that phyB binds stoichiometrically to PIF3 at an equimolar ratio, suggesting that the resultant complex is the unit active in transcriptional regulation at target promoters. Deletion mapping suggests that a 37-aa segment present at the N terminus of phyB, but absent from phyA, contributes strongly to the high binding affinity of phyB for PIF3. Conversely, deletion mapping and point mutation analysis of PIF3 for determinants involved in recognition of phyB indicates that the PAS domain of PIF3 is a major contributor to this interaction, but that a second determinant in the C-terminal domain is also necessary.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Escherichia coli Hsp40 DnaJ and Hsp70 DnaK cooperate in the binding of proteins at intermediate stages of folding, assembly, and translocation across membranes. Binding of protein substrates to the DnaK C-terminal domain is controlled by ATP binding and hydrolysis in the N-terminal ATPase domain. The interaction of DnaJ with DnaK is mediated at least in part by the highly conserved N-terminal J-domain of DnaJ that includes residues 2–75. Heteronuclear NMR experiments with uniformly 15N-enriched DnaJ2–75 indicate that the chemical environment of residues located in helix II and the flanking loops is perturbed on interaction with DnaK or a truncated DnaK molecule, DnaK2–388. NMR signals corresponding to these residues broaden and exhibit changes in chemical shifts in the presence of DnaK(MgADP). Addition of MgATP largely reversed the broadening, indicating that NMR signals of DnaJ2–75 respond to ATP-dependent changes in DnaK. The J-domain interaction is localized to the ATPase domain of DnaK and is likely to be dominated by electrostatic interactions. The results suggest that the J-domain tethers DnaK to DnaJ-bound substrates, which DnaK then binds with its C-terminal peptide-binding domain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Protoporphyrinogen oxidase (EC 1–3-3–4), the 60-kDa membrane-bound flavoenzyme that catalyzes the final reaction of the common branch of the heme and chlorophyll biosynthesis pathways in plants, is the molecular target of diphenyl ether-type herbicides. It is highly resistant to proteases (trypsin, endoproteinase Glu-C, or carboxypeptidases A, B, and Y), because the protein is folded into an extremely compact form. Trypsin maps of the native purified and membrane-bound yeast protoporphyrinogen oxidase show that this basic enzyme (pI > 8.5) was cleaved at a single site under nondenaturing conditions, generating two peptides with relative molecular masses of 30,000 and 35,000. The endoproteinase Glu-C also cleaved the protein into two peptides with similar masses, and there was no additional cleavage site under mild denaturing conditions. N-terminal peptide sequence analysis of the proteolytic (trypsin and endoproteinase Glu-C) peptides showed that both cleavage sites were located in putative connecting loop between the N-terminal domain (25 kDa) with the βαβ ADP-binding fold and the C-terminal domain (35 kDa), which possibly is involved in the binding of the isoalloxazine moiety of the FAD cofactor. The peptides remained strongly associated and fully active with the Km for protoporphyrinogen and the Ki for various inhibitors, diphenyl-ethers, or diphenyleneiodonium derivatives, identical to those measured for the native enzyme. However, the enzyme activity of the peptides was much more susceptible to thermal denaturation than that of the native protein. Only the C-terminal domain of protoporphyrinogen oxidase was labeled specifically in active site-directed photoaffinity-labeling experiments. Trypsin may have caused intramolecular transfer of the labeled group to reactive components of the N-terminal domain, resulting in nonspecific labeling. We suggest that the active site of protoporphyrinogen oxidase is in the C-terminal domain of the protein, at the interface between the C- and N-terminal domains.