39 resultados para Moufang loop


Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA-RNA interactions govern a number of biological processes. Several RNAs, including natural sense and antisense RNAs, interact by means of a two-step mechanism: recognition is mediated by a loop-loop complex, which is then stabilized by formation of an extended intermolecular duplex. It was proposed that the same mechanism holds for dimerization of the genomic RNA of human immunodeficiency virus type 1 (HIV-1), an event thought to control crucial steps of HIV-1 replication. However, whereas interaction between the partially self-complementary loop of the dimerization initiation site (DIS) of each monomer is well established, formation of the extended duplex remained speculative. Here we first show that in vitro dimerization of HIV-1 RNA is a specific process, not resulting from simple annealing of denatured molecules. Next we used mutants of the DIS to test the formation of the extended duplex. Four pairs of transcomplementary mutants were designed in such a way that all pairs can form the loop-loop "kissing" complex, but only two of them can potentially form the extended duplex. All pairs of mutants form heterodimers whose thermal stability, dissociation constant, and dynamics were analyzed. Taken together, our results indicate that, in contrast with the interactions between natural sense and antisense RNAs, no extended duplex is formed during dimerization of HIV-1 RNA. We also showed that 55-mer sense RNAs containing the DIS are able to interfere with the preformed HIV-1 RNA dimer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At meiotic prophase, chromatin loops around a proteinaceous core, with the sizes of these loops varying between species. Comparison of the morphology of sequence-related inserts at different sites in transgenic mice demonstrates that loop size also varies with chromosomal geography. Similarly, chromatin loop lengths differ dramatically for interstitially and terminally located hamster telomeric sequences. Sequences, telomeric or otherwise, located at chromosome termini, closely associate with the meiotic proteinaceous core, forming shorter loops than identical interstitial sequences. Thus, we present evidence that different chromatin packaging mechanisms exist for interstitial versus terminal chromosomal regions, which act separately from those operating at the level of the DNA sequence. Chromosomal position plays the dominant role in chromatin packaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

USF is a family of transcription factors characterized by a highly conserved basic-helix-loop-helix-leucine zipper (bHLH-zip) DNA-binding domain. Two different USF genes, termed USF1 and USF2, are ubiquitously expressed in both humans and mice. The USF1 and USF2 proteins contain highly divergent transcriptional activation domains but share extensive homologies in the bHLH-zip region and recognize the same CACGTG DNA motifs. Although the DNA-binding and transcriptional activities of these proteins have been characterized, the biological function of USF is not well understood. Here, focus- and colony-formation assays were used to investigate the potential involvement of USF in the regulation of cellular transformation and proliferation. Both USF1 and USF2 inhibited the transformation of rat embryo fibroblasts mediated by Ras and c-Myc, a bHLH-zip transcription factor that also binds CACGTG motifs. DNA binding was required but not fully sufficient for inhibition of Myc-dependent transformation by USF, since deletion mutants containing only the DNA-binding domains of USF1 or USF2 produced partial inhibition. While the effect of USF1 was selective for Myc-dependent transformation, wild-type USF2 exerted in addition a strong inhibition of E1A-mediated transformation and a strong suppression of HeLa cell colony formation. These results suggest that members of the USF family may serve as negative regulators of cellular proliferation in two ways, one by antagonizing the transforming function of Myc, the other through a more general growth-inhibitory effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzyme collagenase (EC 3.4.24.7), a key mediator in biological remodeling, can be induced in early-passage fibroblasts by a wide variety of agents and conditions. In contrast, at least some primary tissue fibroblasts are incompetent to synthesize collagenase in response to many of these stimulators. In this study, we investigate mechanisms controlling response to two of the conditions in question: (i) trypsin or cytochalasin B, which disrupt actin stress fibers, or (ii) phorbol 12-myristate 13-acetate (PMA), which activates growth factor signaling pathways. We demonstrate that collagenase expression stimulated by trypsin or cytochalasin B is regulated entirely through an autocrine cytokine, interleukin 1 alpha (IL-1 alpha). The IL-1 alpha intermediate also constitutes the major mechanism by which PMA stimulates collagenase expression, although a second signaling pathway(s) contributes to a minor extent. Elevation of the IL-1 alpha level in response to stimulators is found to be sustained by means of an autocrine feedback loop in early-passage fibroblast cultures. In contrast, fibroblasts freshly isolated from the tissue are incompetent to activate and sustain the IL-1 alpha feedback loop, even though they synthesize collagenase in response to exogenous IL-1. We conclude that this is the reason why tissue fibroblasts are limited, in comparison with subcultured fibroblasts, in their capacity to synthesize collagenase. Activation of the IL-1 alpha feedback loop, therefore, seems likely to be an important mechanism by which resident tissue cells adopt the remodeling phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify genes involved in the regulation of early mammalian development, we have developed a dominant-negative mutant basic-helix-loop-helix (bHLH) protein probe for interaction cloning and have isolated a member of the bHLH family of transcription factors, Meso1. Meso1-E2A heterodimers are capable of binding to oligonucleotide probes that contain a bHLH DNA recognition motif. In mouse embryos, Meso1 is expressed prior to MyoD1 family members. Meso1 expression is first detected at the neural plate stage of development in the paraxial mesoderm of the head and in presomitic mesodermal cells prior to their condensation into somites. Our findings suggest that Meso1 may be a key regulatory gene involved in the early events of vertebrate mesoderm differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoxia-inducible factor 1 (HIF-1) is found in mammalian cells cultured under reduced O2 tension and is necessary for transcriptional activation mediated by the erythropoietin gene enhancer in hypoxic cells. We show that both HIF-1 subunits are basic-helix-loop-helix proteins containing a PAS domain, defined by its presence in the Drosophila Per and Sim proteins and in the mammalian ARNT and AHR proteins. HIF-1 alpha is most closely related to Sim. HIF-1 beta is a series of ARNT gene products, which can thus heterodimerize with either HIF-1 alpha or AHR. HIF-1 alpha and HIF-1 beta (ARNT) RNA and protein levels were induced in cells exposed to 1% O2 and decayed rapidly upon return of the cells to 20% O2, consistent with the role of HIF-1 as a mediator of transcriptional responses to hypoxia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular cell adhesion molecule 1 (VCAM-1) represents a structurally and functionally distinct class of immunoglobulin superfamily molecules that bind leukocyte integrins and are involved in inflammatory and immune functions. X-ray crystallography defines the three-dimensional structure of the N-terminal two-domain fragment that participates in ligand binding. Residues in domain 1 important for ligand binding reside in the C-D loop, which projects markedly from one face of the molecule near the contact between domains 1 and 2. A cyclic peptide that mimics this loop inhibits binding of alpha 4 beta 1 integrin-bearing cells to VCAM-1. These data demonstrate how crystallographic structural information can be used to design a small molecule inhibitor of biological function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most metazoans, the telomeric cytosine-rich strand repeating sequence is d(TAACCC). The crystal structure of this sequence was solved to 1.9-A resolution. Four strands associate via the cytosine-containing parts to form a four-stranded intercalated structure held together by C.C+ hydrogen bonds. The base-paired strands are parallel to each other, and the two duplexes are intercalated into each other in opposite orientations. One TAA end forms a highly stabilized loop with the 5' thymine Hoogsteen-base-paired to the third adenine. The 5' end of this loop is in close proximity to the 3' end of one of the other intercalated cytosine strands. Instead of being entirely in a DNA duplex, this structure suggests the possibility of an alternative conformation for the cytosine-rich telomere strands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous biochemical studies have suggested a role for bacterial DNA topoisomerase (TOPO) I in the suppression of R-loop formation during transcription. In this report, we present several pieces of genetic evidence to support a model in which R-loop formation is dynamically regulated during transcription by activities of multiple DNA TOPOs and RNase H. In addition, our results suggest that events leading to the serious growth problems in the absence of DNA TOPO I are linked to R-loop formation. We show that the overexpression of RNase H, an enzyme that degrades the RNA moiety of an R loop, can partially compensate for the absence of DNA TOPO I. We also note that a defect in DNA gyrase can correct several phenotypes associated with a mutation in the rnhA gene, which encodes the major RNase H activity. In addition, we found that a combination of topA and rnhA mutations is lethal.