85 resultados para Microbial translocation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pretreatment of intact rabbit portal vein smooth muscle with the chimeric toxin DC3B (10−6 M, 48 h; Aullo et al., 1993; Boquet et al. 1995) ADP-ribosylated endogenous RhoA, including cytosolic RhoA complexed with rhoGDI, and inhibited the tonic phase of phenylephrine-induced contraction and the Ca2+-sensitization of force by phenylephrine, endothelin and guanosine triphosphate (GTP)γS, but did not inhibit Ca2+-sensitization by phorbol dibutyrate. DC3B also inhibited GTPγS-induced translocation of cytosolic RhoA (Gong et al., 1997a) to the membrane fraction. In DC3B-treated muscles the small fraction of membrane-associated RhoA could be immunoprecipitated, even after exposure to GTPγS, which prevents immunoprecipitation of non-ADP–ribosylated RhoA. Dissociation of cytosolic RhoA–rhoGDI complexes with SDS restored the immunoprecipitability and ADP ribosylatability of RhoA, indicating that both the ADP-ribosylation site (Asn 41) and RhoA insert loop (Wei et al., 1997) are masked by rhoGDI and that the long axes of the two proteins are in parallel in the heterodimer. We conclude that RhoA plays a significant role in G-protein-, but not protein kinase C-mediated, Ca2+ sensitization and that ADP ribosylation inhibits in vivo the Ca2+-sensitizing effect of RhoA by interfering with its binding to a membrane-associated effector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major physiological role of insulin is the regulation of glucose uptake into skeletal and cardiac muscle and adipose tissue, mediated by an insulin-stimulated translocation of GLUT4 glucose transporters from an intracellular vesicular pool to the plasma membrane. This process is similar to the regulated docking and fusion of vesicles in neuroendocrine cells, a process that involves SNARE-complex proteins. Recently, several SNARE proteins were found in adipocytes: vesicle-associated membrane protein (VAMP-2), its related homologue cellubrevin, and syntaxin-4. In this report we show that treatment of permeabilized 3T3-L1 adipocytes with botulinum neurotoxin D, which selectively cleaves VAMP-2 and cellubrevin, inhibited the ability of insulin to stimulate translocation of GLUT4 vesicles to the plasma membrane. Furthermore, treatment of the permeabilized adipocytes with glutathione S-transferase fusion proteins encoding soluble forms of VAMP-2 or syntaxin-4 also effectively blocked insulin-regulated GLUT4 translocation. These results provide evidence of a functional role for SNARE-complex proteins in insulin-stimulated glucose uptake and suggest that adipocytes utilize a mechanism of regulating vesicle docking and fusion analogous to that found in neuroendocrine tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rearrangement of chromosomal bands 1q21–23 is one of the most frequent chromosomal aberrations observed in hematological malignancy. The genes affected by these rearrangements remain poorly characterized. Typically, 1q21–23 rearrangements arise during tumor evolution and accompany disease-specific chromosomal rearrangements such as t(14;18) (BCL2) and t(8;14) (MYC), where they are thus thought to play an important role in tumor progression. The pathogenetic basis of this 1q21–23-associated disease progression is currently unknown. In this setting, we surveyed our series of follicular lymphoma for evidence of recurring 1q21–23 breaks and identified three cases in which a t(14;18)(q32;q21) was accompanied by a novel balanced t(1;22)(q22;q11). Molecular cloning of the t(1;22) in a cell line (B593) derived from one of these cases and detailed fluorescent in situ hybridization mapping in the two remaining cases identified the FCGR2B gene, which encodes the immunoreceptor tyrosine-based inhibition motif-bearing IgG Fc receptor, FcγRIIB, as the target gene of the t(1;22)(q22;q11). We demonstrate deregulation of FCGR2B leading to hyperexpression of FcγRIIb2 as the principal consequence of the t(1;22). This is evidence that IgG Fc receptors can be targets for deregulation through chromosomal translocation in lymphoma. It suggests that dysregulation of FCGR2B may play a role in tumor progression in follicular lymphoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal transducer and activator of transcription (Stat) proteins are latent transcription factors that reside in the cytoplasm before activation. On cytokine-induced tyrosine phosphorylation, these molecules dimerize and accumulate transiently in the nucleus. No specific signals mediating these processes have been identified to date. In this report, we examine the nuclear export of Stat1. We find that treatment of cells with the export inhibitor leptomycin B does not affect steady-state localization of Stat1 but impedes nuclear export after IFNγ-induced nuclear accumulation. We identify a conserved leucine-rich helical segment in the coiled-coil domain of Stat1, which is responsible for the efficient nuclear export of this protein. Mutation of two hallmark leucines within this segment greatly attenuate the back transport of Stat1 in the cytoplasm. When fused to a carrier protein, the Stat1 export sequence can mediate nuclear export after intranuclear microinjection. We show that prolonging the nuclear presence of Stat1 by inhibiting nuclear export reduces the transcriptional response to stimulation with IFNγ. These data suggest that Stats are actively exported from the nucleus via several separate pathways and link this activity to transcriptional activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mechanism of ion transport across membranes is reported. Microbial transport of Fe3+ generally delivers iron, a growth-limiting nutrient, to cells via highly specific siderophore-mediated transport systems. In contrast, iron transport in the fresh water bacterium Aeromonas hydrophila is found to occur by means of an indiscriminant siderophore transport system composed of a single multifunctional receptor. It is shown that (i) the siderophore and Fe3+ enter the bacterium together, (ii) a ligand exchange step occurs in the course of the transport, and (iii) a redox process is not involved in iron exchange. To the best of our knowledge, there have been no other reports of a ligand exchange mechanism in bacterial iron transport. The ligand exchange step occurs at the cell surface and involves the exchange of iron from a ferric siderophore to an iron-free siderophore already bound to the receptor. This ligand exchange mechanism is also found in Escherichia coli and seems likely to be widely distributed among microorganisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strains of Xanthomonas campestris pv. vesicatoria (Xcv) carrying avrBs2 are specifically recognized by Bs2 pepper plants, resulting in localized cell death and plant resistance. Agrobacterium-mediated transient expression of the Xcv avrBs2 gene in plant cells results in Bs2-dependent cell death, indicating that the AvrBs2 protein alone is sufficient for the activation of disease resistance-mediated cell death in planta. We now provide evidence that AvrBs2 is secreted from Xcv and that secretion is type III (hrp) dependent. N- and C-terminal deletion analysis of AvrBs2 has identified the effector domain of AvrBs2 recognized by Bs2 pepper plants. By using a truncated Pseudomonas syringae AvrRpt2 effector reporter devoid of type III signal sequences, we have localized the minimal region of AvrBs2 required for type III secretion in Xcv. Furthermore, we have identified the region of AvrBs2 required for both type III secretion and translocation to host plants. The mapping of AvrBs2 sequences sufficient for type III delivery also revealed the presence of a potential mRNA secretion signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During protein synthesis, elongation factor G (EF-G) binds to the ribosome and promotes the step of translocation, a process in which tRNA moves from the A to the P site of the ribosome and the mRNA is advanced by one codon. By using three-dimensional cryo-electron microscopy, we have visualized EF-G in a ribosome–EF-G–GDP–fusidic acid complex. Fitting the crystal structure of EF-G–GDP into the cryo density map reveals a large conformational change mainly associated with domain IV, the domain that mimics the shape of the anticodon arm of the tRNA in the structurally homologous ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. The tip portion of this domain is found in a position that overlaps the anticodon arm of the A-site tRNA, whose position in the ribosome is known from a study of the pretranslocational complex, implying that EF-G displaces the A-site tRNA to the P site by physical interaction with the anticodon arm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the interaction of a T cell with an antigen-presenting cell (APC), several receptor ligand pairs, including the T cell receptor (TCR)/major histocompatibility complex (MHC), accumulate at the T cell/APC interface in defined geometrical patterns. This accumulation depends on a movement of the T cell cortical actin cytoskeleton toward the interface. Here we study the involvement of the guanine nucleotide exchange factor vav in this process. We crossed 129 vav−/− mice with B10/BR 5C.C7 TCR transgenic mice and used peptide-loaded APCs to stimulate T cells from the offspring. We found that the accumulation of TCR/MHC at the T cell/APC interface and the T cell actin cytoskeleton rearrangement were clearly defective in these vav+/− mice. A comparable defect in superantigen-mediated T cell activation of T cells from non-TCR transgenic 129 mice was also observed, although in this case it was more apparent in vav−/− mice. These data indicate that vav is an essential regulator of cytoskeletal rearrangements during T cell activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the origin and evolution of biochemical pathways in microorganisms, we have developed methods and software for automatic, large-scale reconstructions of phylogenetic relationships. We define the complete set of phylogenetic trees derived from the proteome of an organism as the phylome and introduce the term phylogenetic connection as a concept that describes the relative relationships between taxa in a tree. A query system has been incorporated into the system so as to allow searches for defined categories of trees within the phylome. As a complement, we have developed the pyphy system for visualising the results of complex queries on phylogenetic connections, genomic locations and functional assignments in a graphical format. Our phylogenomics approach, which links phylogenetic information to the flow of biochemical pathways within and among microbial species, has been used to examine more than 8000 phylogenetic trees from seven microbial genomes. The results have revealed a rich web of phylogenetic connections. However, the separation of Bacteria and Archaea into two separate domains remains robust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Operon structure is an important organization feature of bacterial genomes. Many sets of genes occur in the same order on multiple genomes; these conserved gene groupings represent candidate operons. This study describes a computational method to estimate the likelihood that such conserved gene sets form operons. The method was used to analyze 34 bacterial and archaeal genomes, and yielded more than 7600 pairs of genes that are highly likely (P ≥ 0.98) to belong to the same operon. The sensitivity of our method is 30–50% for the Escherichia coli genome. The predicted gene pairs are available from our World Wide Web site http://www.tigr.org/tigr-scripts/operons/operons.cgi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One challenge presented by large-scale genome sequencing efforts is effective display of uniform information to the scientific community. The Comprehensive Microbial Resource (CMR) contains robust annotation of all complete microbial genomes and allows for a wide variety of data retrievals. The bacterial information has been placed on the Web at http://www.tigr.org/CMR for retrieval using standard web browsing technology. Retrievals can be based on protein properties such as molecular weight or hydrophobicity, GC-content, functional role assignments and taxonomy. The CMR also has special web-based tools to allow data mining using pre-run homology searches, whole genome dot-plots, batch downloading and traversal across genomes using a variety of datatypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subseafloor at the mid-ocean ridge is predicted to be an excellent microbial habitat, because there is abundant space, fluid flow, and geochemical energy in the porous, hydrothermally influenced oceanic crust. These characteristics also make it a good analog for potential subsurface extraterrestrial habitats. Subseafloor environments created by the mixing of hot hydrothermal fluids and seawater are predicted to be particularly energy-rich, and hyperthermophilic microorganisms that broadly reflect such predictions are ejected from these systems in low-temperature (≈15°C), basalt-hosted diffuse effluents. Seven hyperthermophilic heterotrophs isolated from low-temperature diffuse fluids exiting the basaltic crust in and near two hydrothermal vent fields on the Endeavour Segment, Juan de Fuca Ridge, were compared phylogenetically and physiologically to six similarly enriched hyperthermophiles from samples associated with seafloor metal sulfide structures. The 13 organisms fell into four distinct groups: one group of two organisms corresponding to the genus Pyrococcus and three groups corresponding to the genus Thermococcus. Of these three groups, one was composed solely of sulfide-derived organisms, and the other two related groups were composed of subseafloor organisms. There was no evidence of restricted exchange of organisms between sulfide and subseafloor habitats, and therefore this phylogenetic distinction indicates a selective force operating between the two habitats. Hypotheses regarding the habitat differences were generated through comparison of the physiology of the two groups of hyperthermophiles; some potential differences between these habitats include fluid flow stability, metal ion concentrations, and sources of complex organic matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intracellular degradation of many proteins is mediated in an ATP-dependent manner by large assemblies comprising a chaperone ring complex associated coaxially with a proteolytic cylinder, e.g., ClpAP, ClpXP, and HslUV in prokaryotes, and the 26S proteasome in eukaryotes. Recent studies of the chaperone ClpA indicate that it mediates ATP-dependent unfolding of substrate proteins and directs their ATP-dependent translocation into the ClpP protease. Because the axial passageway into the proteolytic chamber is narrow, it seems likely that unfolded substrate proteins are threaded from the chaperone into the protease, suggesting that translocation could be directional. We have investigated directionality in the ClpA/ClpP-mediated reaction by using two substrate proteins bearing the COOH-terminal ssrA recognition element, each labeled near the NH2 or COOH terminus with fluorescent probes. Time-dependent changes in both fluorescence anisotropy and fluorescence resonance energy transfer between donor fluorophores in the ClpP cavity and the substrate probes as acceptors were measured to monitor translocation of the substrates from ClpA into ClpP. We observed for both substrates that energy transfer occurs 2–4 s sooner with the COOH-terminally labeled molecules than with the NH2-terminally labeled ones, indicating that translocation is indeed directional, with the COOH terminus of the substrate protein entering ClpP first.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phyllosphere microbial communities were evaluated on leaves of field-grown plant species by culture-dependent and -independent methods. Denaturing gradient gel electrophoresis (DGGE) with 16S rDNA primers generally indicated that microbial community structures were similar on different individuals of the same plant species, but unique on different plant species. Phyllosphere bacteria were identified from Citrus sinesis (cv. Valencia) by using DGGE analysis followed by cloning and sequencing of the dominant rDNA bands. Of the 17 unique sequences obtained, database queries showed only four strains that had been described previously as phyllosphere bacteria. Five of the 17 sequences had 16S similarities lower than 90% to database entries, suggesting that they represent previously undescribed species. In addition, three fungal species were also identified. Very different 16S rDNA DGGE banding profiles were obtained when replicate cv. Valencia leaf samples were cultured in BIOLOG EcoPlates for 4.5 days. All of these rDNA sequences had 97–100% similarity to those of known phyllosphere bacteria, but only two of them matched those identified by the culture independent DGGE analysis. Like other studied ecosystems, microbial phyllosphere communities therefore are more complex than previously thought, based on conventional culture-based methods.