34 resultados para Markov chains. Convergence. Evolutionary Strategy. Large Deviations
Resumo:
For 21 strains of Salmonella enterica, nucleotide sequences were obtained for three invasion genes, spaO, spaP, and spaQ, of the chromosomal inv/spa complex, the products of which form a protein export system required for entry of the bacteria into nonphagocytic host cells. These genes are present in all eight subspecies of the salmonellae, and homologues occur in a variety of other bacteria, including the enteric pathogens Shigella and Yersinia, in which they are plasmid borne. Evolutionary diversification of the invasion genes among the subspecies of S. enterica has been generally similar in pattern and average rate to that of housekeeping genes. However, the range of variation in evolutionary rate among the invasion genes is unusually large, and there is a relationship between the evolutionary rate and cellular location of the invasion proteins, possibly reflecting diversifying selection on exported proteins in adaptation to variable host factors in extracellular environments. The SpaO protein, which is hypervariable in S. enterica and exhibits only 24% sequence identity with its homologues in Shigella and Yersinia, is secreted. In contrast, the membrane-associated proteins SpaP, SpaQ, and InvA are weakly polymorphic and have > 60% sequence identity with the corresponding proteins of other enteric bacteria. Acquisition of the inv/spa genes may have been a key event in the evolution of the salmonellae as pathogens, following which the invention of flagellar phase shifting facilitated niche expansion to include warm-blooded vertebrates.
Resumo:
This report describes an efficient strategy for determining the functions of sequenced genes in microorganisms. A large population of cells is subjected to insertional mutagenesis. The mutagenized population is then divided into representative samples, each of which is subjected to a different selection. DNA is prepared from each sample population after the selection. The polymerase chain reaction is then used to determine retrospectively whether insertions into a particular sequence affected the outcome of any selection. The method is efficient because the insertional mutagenesis and each selection need only to be performed once to enable the functions of thousands of genes to be investigated, rather than once for each gene. We tested this "genetic footprinting" strategy using the model organism Saccharomyces cerevisiae.
Resumo:
The great adaptability shown by RNA viruses is a consequence of their high mutation rates. Here we investigate the kinetics of virus fitness gains during repeated transfers of large virus populations in cell culture. Results always show that fitness increases exponentially. Low fitness clones exhibit regular increases observed as biphasic periods of exponential evolutionary improvement, while neutral clones show monophasic kinetics. These results are significant for RNA virus epidemiology, optimal handling of attenuated live virus vaccines, and routine laboratory procedures.
Resumo:
The evolutionary stability of cooperation is a problem of fundamental importance for the biological and social sciences. Different claims have been made about this issue: whereas Axelrod and Hamilton's [Axelrod, R. & Hamilton, W. (1981) Science 211, 1390-1398] widely recognized conclusion is that cooperative rules such as "tit for tat" are evolutionarily stable strategies in the iterated prisoner's dilemma (IPD), Boyd and Lorberbaum [Boyd, R. & Lorberbaum, J. (1987) Nature (London) 327, 58-59] have claimed that no pure strategy is evolutionarily stable in this game. Here we explain why these claims are not contradictory by showing in what sense strategies in the IPD can and cannot be stable and by creating a conceptual framework that yields the type of evolutionary stability attainable in the IPD and in repeated games in general. Having established the relevant concept of stability, we report theorems on some basic properties of strategies that are stable in this sense. We first show that the IPD has "too many" such strategies, so that being stable does not discriminate among behavioral rules. Stable strategies differ, however, on a property that is crucial for their evolutionary survival--the size of the invasion they can resist. This property can be interpreted as a strategy's evolutionary robustness. Conditionally cooperative strategies such as tit for tat are the most robust. Cooperative behavior supported by these strategies is the most robust evolutionary equilibrium: the easiest to attain, and the hardest to disrupt.