57 resultados para MYOCARDIAL-ISCHEMIA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To compare risk of myocardial infarction associated with smoking in men and women, taking into consideration differences in smoking behaviour and a number of potential confounding variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To assess effects of intravenous streptokinase, one month of oral aspirin, or both, on long term survival after suspected acute myocardial infarction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To determine call to needle times and consider how best to provide timely thrombolytic treatment for patients with acute myocardial infarction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To clarify the extent to which working hours affect the risk of acute myocardial infarction, independent of established risk factors and occupational conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aberrant blood vessel growth in the retina that underlies the pathology of proliferative diabetic retinopathy and retinopathy of prematurity is the result of the ischemia-driven disruption of the normally antiangiogenic environment of the retina. In this study, we show that a potent inhibitor of angiogenesis found naturally in the normal eye, pigment epithelium-derived growth factor (PEDF), inhibits such aberrant blood vessel growth in a murine model of ischemia-induced retinopathy. Inhibition was proportional to dose and systemic delivery of recombinant protein at daily doses as low as 2.2 mg/kg could prevent aberrant endothelial cells from crossing the inner limiting membrane. PEDF appeared to inhibit angiogenesis by causing apoptosis of activated endothelial cells, because it induced apoptosis in cultured endothelial cells and an 8-fold increase in apoptotic endothelial cells could be detected in situ when the ischemic retinas of PEDF-treated animals were compared with vehicle-treated controls. The ability of low doses of PEDF to curtail aberrant growth of ocular endothelial cells without overt harm to retinal morphology suggests that this natural protein may be beneficial in the treatment of a variety of retinal vasculopathies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suppression of cardiac voltage-gated Na+ currents is probably one of the important factors for the cardioprotective effects of the n-3 polyunsaturated fatty acids (PUFAs) against lethal arrhythmias. The α subunit of the human cardiac Na+ channel (hH1α) and its mutants were expressed in human embryonic kidney (HEK293t) cells. The effects of single amino acid point mutations on fatty acid-induced inhibition of the hH1α Na+ current (INa) were assessed. Eicosapentaenoic acid (EPA, C20:5n-3) significantly reduced INa in HEK293t cells expressing the wild type, Y1767K, and F1760K of hH1α Na+ channels. The inhibition was voltage and concentration-dependent with a significant hyperpolarizing shift of the steady state of INa. In contrast, the mutant N406K was significantly less sensitive to the inhibitory effect of EPA. The values of the shift at 1, 5, and 10 μM EPA were significantly smaller for N406K than for the wild type. Coexpression of the β1 subunit and N406K further decreased the inhibitory effects of EPA on INa in HEK293t cells. In addition, EPA produced a smaller hyperpolarizing shift of the V1/2 of the steady-state inactivation in HEK293t cells coexpressing the β1 subunit and N406K. These results demonstrate that substitution of asparagine with lysine at the site of 406 in the domain-1-segment-6 region (D1-S6) significantly decreased the inhibitory effect of PUFAs on INa, and coexpression with β1 decreased this effect even more. Therefore, asparagine at the 406 site in hH1α may be important for the inhibition by the PUFAs of cardiac voltage-gated Na+ currents, which play a significant role in the antiarrhythmic actions of PUFAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erythropoietin (EPO) promotes neuronal survival after hypoxia and other metabolic insults by largely unknown mechanisms. Apoptosis and necrosis have been proposed as mechanisms of cellular demise, and either could be the target of actions of EPO. This study evaluates whether antiapoptotic mechanisms can account for the neuroprotective actions of EPO. Systemic administration of EPO (5,000 units/kg of body weight, i.p.) after middle-cerebral artery occlusion in rats dramatically reduces the volume of infarction 24 h later, in concert with an almost complete reduction in the number of terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling of neurons within the ischemic penumbra. In both pure and mixed neuronal cultures, EPO (0.1–10 units/ml) also inhibits apoptosis induced by serum deprivation or kainic acid exposure. Protection requires pretreatment, consistent with the induction of a gene expression program, and is sustained for 3 days without the continued presence of EPO. EPO (0.3 units/ml) also protects hippocampal neurons against hypoxia-induced neuronal death through activation of extracellular signal-regulated kinases and protein kinase Akt-1/protein kinase B. The action of EPO is not limited to directly promoting cell survival, as EPO is trophic but not mitogenic in cultured neuronal cells. These data suggest that inhibition of neuronal apoptosis underlies short latency protective effects of EPO after cerebral ischemia and other brain injuries. The neurotrophic actions suggest there may be longer-latency effects as well. Evaluation of EPO, a compound established as clinically safe, as neuroprotective therapy in acute brain injury is further supported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because neurogenesis persists in the adult mammalian brain and can be regulated by physiological and pathological events, we investigated its possible involvement in the brain's response to focal cerebral ischemia. Ischemia was induced by occlusion of the middle cerebral artery in the rat for 90 min, and proliferating cells were labeled with 5-bromo-2′-deoxyuridine-5′-monophosphate (BrdUrd) over 2-day periods before sacrificing animals 1, 2 or 3 weeks after ischemia. Ischemia increased the incorporation of BrdUrd into cells in two neuroproliferative regions—the subgranular zone of the dentate gyrus and the rostral subventricular zone. Both effects were bilateral, but that in the subgranular zone was more prominent on the ischemic side. Cells labeled with BrdUrd coexpressed the immature neuronal markers doublecortin and proliferating cell nuclear antigen but did not express the more mature cell markers NeuN and Hu, suggesting that they were nascent neurons. These results support a role for ischemia-induced neurogenesis in what may be adaptive processes that contribute to recovery after stroke.