37 resultados para Leukocyte alkaline phosphatase
Resumo:
The mechanisms regulating expression of mouse mammary tumor virus (MMTV)-encoded superantigens from the viral sag gene are largely unknown, due to problems with detection and quantification of these low-abundance proteins. To study the expression and regulation of the MMTV sag gene, we have developed a sensitive and quantitative reporter gene assay based on a recombinant superantigen-human placental alkaline phosphatase fusion protein. High sag-reporter expression in Ba/F3, an early B-lymphoid cell line, depends on enhancers in either of the viral long terminal repeats (LTRs) and is largely independent of promoters in the 5' LTR. The same enhancer region is also required for general expression of MMTV genes from the 5' LTR. The enhancer was mapped to a 548-bp fragment of the MMTV LTR lying within sag and shown to be sufficient to stimulate expression from a heterologous simian virus 40 promoter. No enhancer activity of the MMTV LTR was observed in XC sarcoma cells, which are permissive for MMTV. Our results demonstrate a major role for this enhancer in MMTV gene expression in early B-lymphoid cells.
Resumo:
When Dictyostelium discoideum cells are drawn into a fine glass capillary, they rapidly begin the first steps toward the formation of prestalk and prespore zones. Some of the events occur within a minute or two, whereas others follow later. The cells in the front segment are actively motile and those in the hind segment are passive. The volumes of the segments are proportional for different-sized cell masses, and those proportions are the same as those found in normal slugs. When the cells are stained with the vital dye neutral red, the anterior zone becomes darker simultaneously with the formation of the division line. Green fluorescent protein expressed from a stalk-specific promoter is synthesized mostly in the anterior end. Later, this capillary prestalk zone shows a sharp increase in alkaline phosphatase activity, which is known to be characteristic of prestalk cells.
Resumo:
Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. Here we report the derivation of a cloned cell line (R278.5) from a rhesus monkey blastocyst that remains undifferentiated in continuous passage for > 1 year, maintains a normal XY karyotype, and expresses the cell surface markers (alkaline phosphatase, stage-specific embryonic antigen 3, stage-specific embryonic antigen 4, TRA-1-60, and TRA-1-81) that are characteristic of human embryonal carcinoma cells. R278.5 cells remain undifferentiated when grown on mouse embryonic fibroblast feeder layers but differentiate or die in the absence of fibroblasts, despite the presence of recombinant human leukemia inhibitory factor. R278.5 cells allowed to differentiate in vitro secrete bioactive chorionic gonadotropin into the medium, express chorionic gonadotropin alpha- and beta-subunit mRNAs, and express alpha-fetoprotein mRNA, indicating trophoblast and endoderm differentiation. When injected into severe combined immunodeficient mice, R278.5 cells consistently differentiate into derivatives of all three embryonic germ layers. These results define R278.5 cells as an embryonic stem cell line, to our knowledge, the first to be derived from any primate species.
Resumo:
Cyclic nucleotide-gated (CNG) cation channels contain two short sequence motifs--a residual voltage-sensor (S4) and a pore-forming (P) segment--that are reminiscent of similar segments in voltage-activated Shaker-type K+ channels. It has been tacitly assumed that CNG channels and this K+ channel subfamily share a common overall topology, characterized by a hydrophobic domain comprising six membrane-spanning segments. We have systematically investigated the topology of CNG channels from bovine rod photoreceptor and Drosophila melanogaster by a gene fusion approach using the bacterial reporter enzymes alkaline phosphatase and beta-galactosidase, which are active only in the periplasm and only in the cytoplasm, respectively. Enzymatic activity was determined after expression of fusion constructs in Escherichia coli. CNG channels were found to have six membrane-spanning segments, suggesting that CNG and Shaker-type K+ channels, albeit distant relatives within a gene superfamily of ion channels, share a common topology.
Resumo:
Envelope glycoproteins of varicella zoster virus (VZV) contain mannose 6-phosphate (Man6P) residues. We now report that Man6P competitively and selectively inhibits infection of cells in vitro by cell-free VZV; furthermore, dephosphorylation of VZV by exposure to alkaline phosphatase rapidly destroys infectivity. Cells are also protected from VZV in a concentration-dependent manner by heparin (ED50 = 0.23 micrograms/ml; 95% confidence limits = 0.16-0.26 microgram/ml) but not by chondroitin sulfate. Both heparin and Man6P are protective only when present about the time of inoculation. Heparin but not Man6P interferes with the attachment of VZV to cell surfaces; moreover, VZV binds to heparin-affinity columns. These data are compatible with a working hypothesis, whereby VZV attaches to cell surfaces by binding to a heparin sulfate proteoglycan. This binding stabilizes VZV, making possible a low-affinity interaction with another Man6P-dependent receptor, which is necessary for viral entry.
Resumo:
Previous reports indicate that the expression and/or activity of the protein-tyrosine phosphatase (PTP) LAR are increased in insulin-responsive tissues of obese, insulin-resistant humans and rodents, but it is not known whether these alterations contribute to the pathogenesis of insulin resistance. To address this question, we generated transgenic mice that overexpress human LAR, specifically in muscle, to levels comparable to those reported in insulin-resistant humans. In LAR-transgenic mice, fasting plasma insulin was increased 2.5-fold compared with wild-type controls, whereas fasting glucose was normal. Whole-body glucose disposal and glucose uptake into muscle in vivo were reduced by 39–50%. Insulin injection resulted in normal tyrosyl phosphorylation of the insulin receptor and insulin receptor substrate 1 (IRS-1) in muscle of transgenic mice. However, phosphorylation of IRS-2 was reduced by 62%, PI3′ kinase activity associated with phosphotyrosine, IRS-1, or IRS-2 was reduced by 34–57%, and association of p85α with both IRS proteins was reduced by 39–52%. Thus, overexpression of LAR in muscle causes whole-body insulin resistance, most likely due to dephosphorylation of specific regulatory phosphotyrosines on IRS proteins. Our data suggest that increased expression and/or activity of LAR or related PTPs in insulin target tissues of obese humans may contribute to the pathogenesis of insulin resistance.
Resumo:
Alendronate (ALN), an aminobisphosphonate used in the treatment of osteoporosis, is a potent inhibitor of bone resorption. Its molecular target is still unknown. This study examines the effects of ALN on the activity of osteoclast protein-tyrosine phosphatase (PTP; protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48), called PTPepsilon. Using osteoclast-like cells generated by coculturing mouse bone marrow cells with mouse calvaria osteoblasts, we found by molecular cloning and RNA blot hybridization that PTPepsilon is highly expressed in osteoclastic cells. A purified fusion protein of PTPepsilon expressed in bacteria was inhibited by ALN with an IC50 of 2 microM. Other PTP inhibitors--orthovanadate and phenylarsine oxide (PAO)-inhibited PTPepsilon with IC50 values of 0.3 microM and 18 microM, respectively. ALN and another bisphosphonate, etidronate, also inhibited the activities of other bacterially expressed PTPs such as PTPsigma and CD45 (also called leukocyte common antigen). The PTP inhibitors ALN, orthovanadate, and PAO suppressed in vitro formation of multinucleated osteoclasts from osteoclast precursors and in vitro bone resorption by isolated rat osteoclasts (pit formation) with estimated IC50 values of 10 microM, 3 microM, and 0.05 microM, respectively. These findings suggest that tyrosine phosphatase activity plays an important role in osteoclast formation and function and is a putative molecular target of bisphosphonate action.