180 resultados para K ras protein


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent work has suggested that the chromosomally encoded TetA(L) transporter of Bacillus subtilis, for which no physiological function had been shown earlier, not only confers resistance to low concentrations of tetracycline but is also a multifunctional antiporter protein that has dominant roles in both Na+- and K+-dependent pH homeostasis and in Na+ resistance during growth at alkaline pH. To rigorously test this hypothesis, TetA(L) has been purified with a hexahistidine tag at its C terminus and reconstituted into proteoliposomes. The TetA(L)–hexahistidine proteoliposomes exhibit high activities of tetracycline–cobalt/H+, Na+/H+, and K+/H+ antiport in an assay in which an outwardly directed proton gradient is artificially imposed and solute uptake is monitored. Tetracycline uptake depends on the presence of cobalt and vice versa, with the cosubstrates being transported in a 1:1 ratio. Evidence for the electrogenicity of both tetracycline–cobalt/H+ and Na+/H+ antiports is presented. K+ and Li+ inhibit Na+ uptake, but there is little cross-inhibition between Na+ and tetracycline–cobalt uptake activities. The results strongly support the conclusion that TetA(L) is a multifunctional antiporter. They expand the roster of such porters to encompass one with a complex organic substrate and monovalent cation substrates that may have distinct binding domains, and provide the first functional reconstitution of a member of the 14-transmembrane segment transporter family.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Selectins mediate rolling, the initial step of leukocyte adhesion to endothelial cells [Springer, T. A. (1995) Annu. Rev. Physiol. 57, 827–872 and Butcher, E. C. (1991) Cell 67, 1033–1036]. In this study we show that l-selectin triggering of Jurkat cells using different antibodies or glycomimetics resulted in activation of the src-tyrosine kinase p56lck; tyrosine phosphorylation of intracellular proteins, in particular mitogen-activating protein kinase and l-selectin; and association of Grb2/Sos with l-selectin. This association correlated with an activation of p21Ras, mitogen-activating protein kinase, Rac2, and a transient increase of O2− synthesis. Stimulation of the Ras pathway by l-selectin requires functional p56lck, since p56lck-deficient Jurkat cells (JCaM1.6) do not show tyrosine phosphorylation, association of l-selectin with Grb2/Sos, and activation of Ras upon l-selectin triggering. Transfection of JCaM1.6 cells with p56lck reconstitutes the observed signaling events. Genetic inhibition of Ras or Rac2 prevented Rac2 stimulation and O2− synthesis, respectively. The specificity and the physiological significance of the observed signaling cascade is indicated by stimulation of l-selectin-transfected P815, l-selectin-positive CEM or peripheral blood lymphocytes resulting in the same activation events as in Jurkat cells. Our results point to a signaling cascade from l-selectin via p56lck, Grb2/Sos, Ras, and Rac2 to O2− .

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The p53 tumor suppressor gene can inhibit proliferation transiently, induce permanent cell-cycle arrest/senescence, or cause apoptosis depending on the cellular context. The mitogen-activated protein kinase (MAPK) cascade is known to play a crucial role in cell proliferation and differentiation. Moreover, the duration and intensity of MAPK activation can profoundly influence the biological response observed. We demonstrated that a sustained activation of MAPK cascade could be induced by wild-type p53 expression but not by p21Waf1/Cip1. Furthermore, exposure of normal cells to DNA-damaging agents induced MAPK activation in a p53-dependent manner. Tumor-derived p53 mutants defective in DNA binding failed to activate MAPK, implying that p53 transcriptional activity is essential for this function. Finally, activation of MAPK by p53 was inhibited by expression of dominant-negative Ras (N17Ras) and Raf1 mutants, indicating that MAPK activation by p53 is mediated at a level upstream of Ras. All of these findings establish a biochemical link between p53 signaling and the Ras/Raf/MAPK cascade.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transformation of normal cloned rat embryo fibroblast (CREF) cells with cellular oncogenes results in acquisition of anchorage-independent growth and oncogenic potential in nude mice. These cellular changes correlate with an induction in the expression of a cancer progression-promoting gene, progression elevated gene-3 (PEG-3). To define the mechanism of activation of PEG-3 as a function of transformation by the Ha-ras and v-raf oncogenes, evaluations of the signaling and transcriptional regulation of the ~2.0 kb promoter region of the PEG-3 gene, PEG-Prom, was undertaken. The full-length and various mutated regions of the PEG-Prom were linked to a luciferase reporter construct and tested for promoter activity in CREF and oncogene-transformed CREF cells. An analysis was also performed using CREF cells doubly transformed with Ha-ras and the Ha-ras specific suppressor gene Krev-1, which inhibits the transformed phenotype in vitro. These assays document an association between expression of the transcription regulator PEA3 and PEG-3. The levels of PEA3 and PEG-3 RNA and proteins are elevated in the oncogenically transformed CREF cells, and reduced in transformation and tumorigenic suppressed Ha-ras/Krev-1 doubly transformed CREF cells. Enhanced tumorigenic behavior, PEG-3 promoter function and PEG-3 expression in Ha-ras transformed cells were all dependent upon increased activity within the mitogen-activated protein kinase (MAPK) pathway. Electrophoretic mobility shift assays and DNase I footprinting experiments indicate that PEA3 binds to sites within the PEG-Prom in transformed rodent cells in an area adjacent to the TATA box in a MAPK-dependent fashion. These findings demonstrate an association between Ha-ras and v-raf transformation of CREF cells with elevated PEA3 and PEG-3 expression, and they implicate MAPK signaling via PEA3 as a signaling cascade involved in activation of the PEG-Prom.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Local anesthetics, commonly used for treating cardiac arrhythmias, pain, and seizures, are best known for their inhibitory effects on voltage-gated Na+ channels. Cardiovascular and central nervous system toxicity are unwanted side-effects from local anesthetics that cannot be attributed to the inhibition of only Na+ channels. Here, we report that extracellular application of the membrane-permeant local anesthetic bupivacaine selectively inhibited G protein-gated inwardly rectifying K+ channels (GIRK:Kir3) but not other families of inwardly rectifying K+ channels (ROMK:Kir1 and IRK:Kir2). Bupivacaine inhibited GIRK channels within seconds of application, regardless of whether channels were activated through the muscarinic receptor or directly via coexpressed G protein Gβγ subunits. Bupivacaine also inhibited alcohol-induced GIRK currents in the absence of functional pertussis toxin-sensitive G proteins. The mutated GIRK1 and GIRK2 (GIRK1/2) channels containing the high-affinity phosphatidylinositol 4,5-bisphosphate (PIP2) domain from IRK1, on the other hand, showed dramatically less inhibition with bupivacaine. Surprisingly, GIRK1/2 channels with high affinity for PIP2 were inhibited by ethanol, like IRK1 channels. We propose that membrane-permeant local anesthetics inhibit GIRK channels by antagonizing the interaction of PIP2 with the channel, which is essential for Gβγ and ethanol activation of GIRK channels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Arabidopsis thaliana AtHKT1 protein, a Na+/K+ transporter, is capable of mediating inward Na+ currents in Xenopus laevis oocytes and K+ uptake in Escherichia coli. HKT1 proteins are members of a superfamily of K+ transporters. These proteins have been proposed to contain eight transmembrane segments and four pore-forming regions arranged in a mode similar to that of a K+ channel tetramer. However, computer analysis of the AtHKT1 sequence identified eleven potential transmembrane segments. We have investigated the membrane topology of AtHKT1 with three different techniques. First, a gene fusion alkaline phosphatase study in E. coli clearly defined the topology of the N-terminal and middle region of AtHKT1, but the model for membrane folding of the C-terminal region had to be refined. Second, with a reticulocyte-lysate supplemented with dog-pancreas microsomes, we demonstrated that N-glycosylation occurs at position 429 of AtHKT1. An engineered unglycosylated protein variant, N429Q, mediated Na+ currents in X. laevis oocytes with the same characteristics as the wild-type protein, indicating that N-glycosylation is not essential for the functional expression and membrane targeting of AtHKT1. Five potential glycosylation sites were introduced into the N429Q. Their pattern of glycosylation supported the model based on the E. coli-alkaline phosphatase data. Third, immunocytochemical experiments with FLAG-tagged AtHKT1 in HEK293 cells revealed that the N and C termini of AtHKT1, and the regions containing residues 135–142 and 377–384, face the cytosol, whereas the region of residues 55–62 is exposed to the outside. Taken together, our results show that AtHKT1 contains eight transmembrane-spanning segments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the production of hyaluronan (HA) and its effect on cell motility in cells expressing the v-src mutants. Transformation of 3Y1 by v-src virtually activated HA secretion, whereas G2A v-src, a nonmyristoylated form of v-src defective in cell transformation, had no effect. In cells expressing the temperature-sensitive mutant of v-Src, HA secretion was temperature dependent. In addition, HA as small as 1 nM, on the other side, activated cell motility in a tumor-specific manner. HA treatment strongly activated the motility of v-Src–transformed 3Y1, whereas it showed no effect on 3Y1- and 3Y1-expressing G2A v-src. HA-dependent cell locomotion was strongly blocked by either expression of dominant-negative Ras or treatment with a Ras farnesyltransferase inhibitor. Similarly, both the MEK1 inhibitor and the kinase inhibitor clearly inhibited HA-dependent cell locomotion. In contrast, cells transformed with an active MEK1 did not respond to the HA. Finally, an anti-CD44–neutralizing antibody could block the activation of cell motility by HA as well as the HA-dependent phosphorylation of mitogen-activated protein kinase and Akt. Taken together, these results suggest that simultaneous activation of the Ras-mitogen-activated protein kinase pathway and the phosphoinositide 3-kinase pathway by the HA-CD44 interaction is required for the activation of HA-dependent cell locomotion in v-Src–transformed cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Messenger RNA transcripts of the highly pigmented murine melanoma B16-F1 cells were compared with those from their weakly pigmented derivative B16-F10 cells by differential display. A novel gene called msg1 (melanocyte-specific gene) was found to be expressed at high levels in B16-F1 cells but at low levels in B16-F10 cells. Expression of msg1 was undetectable in the amelanotic K1735 murine melanoma cells. The pigmented murine melanocyte cell line melan-a expressed msg1, as did pigmented primary cultures of murine and human melanocytes; however, seven amelanotic or very weakly pigmented human melanoma cell lines were negative. Transformation of murine melanocytes by transfection with v-Ha-ras or Ela was accompanied by depigmentation and led to complete loss of msg1 expression. The normal tissue distribution of msg1 mRNA transcripts in adult mice was confined to melanocytes and testis. Murine msg1 and human MSG1 genes encode a predicted protein of 27 kDa with 75% overall amino acid identity and 96% identity within the C-terminal acidic domain of 54 amino acids. This C-terminal domain was conserved with 76% amino acid identity in another protein product of a novel human gene, MRG1 (msg1-related gene), isolated from normal human melanocyte cDNA by 5'-rapid amplification of cDNA ends based on the homology to msg1. The msg1 protein was localized to the melanocyte nucleus by immunofluorescence cytochemistry. We conclude that msg1 encodes a nuclear protein, is melanocyte-specific, and appears to be lost in depigmented melanoma cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phosphorylation of the alpha-1 subunit of rat Na+,K(+)-ATPase by protein kinase C has been shown previously to decrease the activity of the enzyme in vitro. We have now undertaken an investigation of the mechanism by which this inhibition occurs. Analysis of the phosphorylation of recombinant glutathione S-transferase fusion proteins containing putative cytoplasmic domains of the protein, site-directed mutagenesis, and two-dimensional peptide mapping indicated that protein kinase C phosphorylated the alpha-1 subunit of the rat Na+,K(+)-ATPase within the extreme NH2-terminal domain, on serine-23. The phosphorylation of this residue resulted in a shift in the equilibrium toward the E1 form, as measured by eosin fluorescence studies, and this was associated with a decrease in the apparent K+ affinity of the enzyme, as measured by ATPase activity assays. The rate of transition from E2 to E1 was apparently unaffected by phosphorylation by protein kinase C. These results, together with previous studies that examined the effects of tryptic digestion of Na+,K(+)-ATPase, suggest that the NH2-terminal domain of the alpha-1 subunit, including serine-23, is involved in regulating the activity of the enzyme.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rna1p is the GTPase activating enzyme for Ran/TC4, a Ras-like GTPase necessary for nuclear/cytosolic exchange. Although most wild-type Rna1p is located in the cytosol, we found that the vast majority of the mutant Rna1-1p and, under appropriate physiological conditions, a small portion of the wild-type Rna1p cofractionate with yeast nuclei. Subnuclear fractionation studies show that most of the Rna1p is tightly associated with nuclear components, and that a portion of the active protein can be solubilized by treatments that fail to solubilize inactive Rna1-1p. To learn the precise nuclear locations of the Rna1 proteins, we studied their subcellular distributions in HeLa cells. By indirect immuno-fluorescence we show that wild-type Rna1p has three subcellular locations. The majority of the protein is distributed throughout the cytosol, but a portion of the protein is nucleus-associated, located at both the cytosolic surface and within the nucleoplasm. Mutant Rna1-1p is found at the outer nuclear surface and in the cytosol. We propose that a small pool of the wild-type Rna1p is located in the nuclear interior, supporting the model that the same components of the Ran/TC4 GTPase cycle exist on both sides of the nuclear membrane.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The potent transforming activity of membrane-targeted Raf-1 (Raf-CAAX) suggests that Ras transformation is triggered primarily by a Ras-mediated translocation of Raf-1 to the plasma membrane. However, whereas constitutively activated mutants of Ras [H-Ras(61L) and K-Ras4B(12V)] and Raf-1 (DeltaRaf-22W and Raf-CAAX) caused indistinguishable morphologic and growth (in soft agar and nude mice) transformation of NIH 3T3 fibroblasts, only mutant Ras caused morphologic transformation of RIE-1 rat intestinal cells. Furthermore, only mutant Ras-expressing RIE-1 cells formed colonies in soft agar and developed rapid and progressive tumors in nude mice. We also observed that activated Ras, but not Raf-1, caused transformation of IEC-6 rat intestinal and MCF-10A human mammary epithelial cells. Although both Ras- and DeltaRaf-22W-expressing RIE-1 cells showed elevated Raf-1 and mitogen-activated protein (MAP) kinase activities, only Ras-transformed cells produced secreted factors that promoted RIE-1 transformation. Incubation of untransformed RIE-1 cells in the presence of conditioned medium from Ras-expressing, but not DeltaRaf-22W-expressing, cells caused a rapid and stable morphologic transformation that was indistinguishable from the morphology of Ras-transformed RIE-1 cells. Thus, induction of an autocrine growth mechanism may distinguish the transforming actions of Ras and Raf. In summary, our observations demonstrate that oncogenic Ras activation of the Raf/MAP kinase pathway alone is not sufficient for full tumorigenic transformation of RIE-1 epithelial cells. Thus, Raf-independent signaling events are essential for oncogenic Ras transformation of epithelial cells, but not fibroblasts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Strongly rectifying IRK-type inwardly rectifying K+ channels are involved in the control of neuronal excitability in the mammalian brain. Whole-cell patch-clamp experiments show that cloned rat IRK1 (Kir 2.1) channels, when heterologously expressed in mammalian COS-7 cells, are inhibited following the activation of coexpressed serotonin (5-hydroxytryptamine) type 1A receptors by receptor agonists. Inhibition is mimicked by internal perfusion with GTP[gamma-S] and elevation of internal cAMP concentrations. Addition of the catalytic subunits of protein kinase A (PKA) to the internal recording solution causes complete inhibition of wild-type IRK1 channels, but not of mutant IRK1(S425N) channels in which a C-terminal PKA phosphorylation site has been removed. Our data suggest that in the nervous system serotonin may negatively control IRK1 channel activity by direct PKA-mediated phosphorylation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A 145-kDa tyrosine-phosphorylated protein that becomes associated with Shc in response to multiple cytokines has been purified from the murine hemopoietic cell line B6SUtA1. Amino acid sequence data were used to clone the cDNA encoding this protein from a B6SUtA1 library. The predicted amino acid sequence encodes a unique protein containing an N-terminal src homology 2 domain, two consensus sequences that are targets for phosphotyrosine binding domains, a proline-rich region, and two motifs highly conserved among inositol polyphosphate 5-phosphatases. Cell lysates immunoprecipitated with antiserum to this protein exhibited both phosphatidylinositol 3,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate polyphosphate 5-phosphatase activity. This novel signal transduction intermediate may serve to modulate both Ras and inositol signaling pathways. Based on its properties, we suggest the 145-kDa protein be called SHIP for SH2-containing inositol phosphatase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to identify guanine nucleotide-binding proteins (G proteins) involved in the agonist- and guanosine 5'-[gamma-thio]triphosphate (GTP[gamma-S])-induced increase in the Ca2+ sensitivity of 20-kDa myosin light chain (MLC20) phosphorylation and contraction in smooth muscle. A constitutively active, recombinant val14p21rhoA.GTP expressed in the baculovirus/Sf9 system, but not the protein expressed without posttranslational modification in Escherichia coli, induced at constant Ca2+ (pCa 6.4) a slow contraction associated with increased MLC20 phosphorylation from 19.8% to 29.5% (P < 0.05) in smooth muscle permeabilized with beta-esein. The effect of val14p21rhoA.GTP was inhibited by ADP-ribosylation of the protein and was absent in smooth muscle extensively permeabilized with Triton X-100. ADP-ribosylation of endogenous p21rho with epidermal cell differentiation inhibitor (EDIN) inhibited Ca2+ sensitization induced by GTP [in rabbit mesenteric artery (RMA) and rabbit ileum smooth muscles], by carbachol (in rabbit ileum), and by endothelin (in RMA), but not by phenylephrine (in RMA), and only slowed the rate without reducing the amplitude of contractions induced in RMA by 1 microM GTP[gamma-S] at constant Ca2+ concentrations. AlF(4-)-induced Ca2+ sensitization was inhibited by both guanosine 5'-[beta-thio]diphosphate (GDP[beta-S]) and by EDIN. EDIN also inhibited, to a lesser extent, contractions induced by Ca2+ alone (pCa 6.4) in both RMA and rabbit ileum. ADP-ribosylation of trimeric G proteins with pertussis toxin did not inhibit Ca2+ sensitization. We conclude that p21rho may play a role in physiological Ca2+ sensitization as a cofactor with other messengers, rather than as a sole direct inhibitor of smooth muscle MLC20 phosphatase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deletion of the clathrin heavy-chain gene, CHC1, in the budding yeast Saccharomyces cerevisiae results in growth, morphological, and membrane trafficking defects, and in some strains chc1-delta is lethal. A previous study identified five genes which, in multicopy, rescue inviable strains of Chc- yeast. Now we report that one of the suppressor loci, BMH2/SCD3, encodes a protein of the 14-3-3 family. The 14-3-3 proteins are abundant acidic proteins of approximately 30 kDa with numerous isoforms and a diverse array of reported functions. The Bmh2 protein is > 70% identical to the mammalian epsilon-isoform and > 90% identical to a previously reported yeast 14-3-3 protein encoded by BMH1. Single deletions of BMH1 or BMH2 have no discernable phenotypes, but deletion of both BMH1 and BMH2 is lethal. High-copy BMH1 also rescues inviable strains of Chc- yeast, although not as well as BMH2. In addition, the slow growth of viable strains of Chc- yeast is further impaired when combined with single bmh mutations, often resulting in lethality. Overexpression of BMH genes also partially suppresses the temperature sensitivity of the cdc25-1 mutant, and high-copy TPK1, encoding a cAMP-dependent protein kinase, restores Bmh- yeast to viability. High-copy TPK1 did not rescue Chc- yeast. These genetic interactions suggest that budding-yeast 14-3-3 proteins are multifunctional and may play a role in both vesicular transport and Ras signaling pathways.