46 resultados para Ineffective Nodulation
Resumo:
SoxR is a transcription factor that governs a global defense against the oxidative stress caused by nitric oxide or excess superoxide in Escherichia coli. SoxR is a homodimer containing a pair of [2Fe-2S] clusters essential for its transcriptional activity, and changes in the stability of these metal centers could contribute to the activation or inactivation of SoxR in vivo. Herein we show that reduced glutathione (GSH) in aerobic solution disrupts the SoxR [2Fe-2S] clusters, releasing Fe from the protein and eliminating SoxR transcriptional activity. This disassembly process evidently involves oxygen-derived free radicals. The loss of [2Fe-2S] clusters does not occur in anaerobic solution and is blocked in aerobic solution by the addition of superoxide dismutase and catalase. Although H2O2 or xanthine oxidase and hypoxanthine (to generate superoxide) were insufficient on their own to cause [2Fe-2S] cluster loss, they did accelerate the rate of disassembly after GSH addition. Oxidized GSH alone was ineffective in disrupting the clusters, but the rate of [2Fe-2S] cluster disassembly was maximal when reduced and oxidized GSH were present at a ratio of approximately 1:3, which suggests the critical involvement of a GSH-based free radical in the disassembly process. Such a reaction might occur in vivo: we found that the induction by paraquat of SoxR-dependent soxS transcription was much higher in a GSH-deficient E. coli strain than in its GSH-containing parent. The results imply that GSH may play a significant role during the deactivation process of SoxR in vivo. Ironically, superoxide production seems both to activate SoxR and, in the GSH-dependent disassembly process, to switch off this transcription factor.
Resumo:
Cytosine arabinonucleoside (AraC) is a pyrimidine antimetabolite that kills proliferating cells by inhibiting DNA synthesis and, importantly, is also an inducer of apoptosis. We recently reported that age-induced apoptotic cell death of cultured cerebellar neurons is directly associated with an over-expression of a particulate 38-kDa protein, identified by us as glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12). We now show that the AraC-induced neuronal death of immature cerebellar granule cells in culture is effectively delayed by actinomycin-D, cycloheximide, or aurintricarboxylic acid (a DNase inhibitor). Furthermore, two GAPDH antisense, but not their corresponding sense, oligodeoxyribonucleotides markedly arrested AraC-induced apoptosis. This protection was more effective than that induced by the above-mentioned classical inhibitors of apoptosis. Prior to AraC-induced neuronal death, GAPDH mRNA levels increased by approximately 2.5-fold, and this mRNA accumulation was blocked by actinomycin-D and the GAPDH antisense (but not sense) oligonucleotide. Like actinomycin-D, a GAPDH antisense oligonucleotide also suppressed the AraC-induced over-expression of the 38-kDa particulate protein (i.e., GAPDH), while the corresponding sense oligonucleotide was totally ineffective. Thus, the present results show that GAPDH over-expression is involved in AraC-induced apoptosis of cultured cerebellar granule cells.
Resumo:
MRL/MP-+/+ (MRL/+) mice develop pancreatitis and sialoadenitis after they reach 7 months of age. Conventional bone marrow transplantation has been found to be ineffective in the treatment of these forms of apparent autoimmune disease. Old MRL/+ mice show a dramatic thymic involution with age. Hematolymphoid reconstitution is incomplete when fetal liver cells (as a source of hemopoietic stem cells) plus fetal bone (FB; which is used to recruit stromal cells) are transplanted from immunologically normal C57BL/6 donor mice to MRL/+ female recipients. Embryonic thymus from allogeneic C57BL/6 donors was therefore engrafted along with either bone marrow or fetal hematopoietic cells (FHCs) plus fragments of adult or fetal bone. More than seventy percent of old MRL/+ mice (> 7 months) that had been given a fetal thymus (FT) transplant plus either bone marrow or FHCs and also bone fragments survived more than 100 days after treatment. The mice that received FHCs, FB, plus FT from allogeneic donors developed normal T cell and B cell functions. Serum amylase levels decreased in these mice whereas they increased in the mice that received FHCs and FB but not FT. The pancreatitis and sialoadenitis already present at the time of transplantations were fully corrected according to histological analysis by transplants of allogeneic FHCs, FB and FT in the MRL/+ mice. These findings are taken as an experimental indication that perhaps stem cell transplants along with FT grafts might represent a useful strategy for treatment of autoimmune diseases in aged humans.
Resumo:
Effective invasion of alfalfa by Rhizobium meliloti Rm1021 normally requires the presence of succinoglycan, an exopolysaccharide (EPS) produced by the bacterium. However, Rm1021 has the ability to produce a second EPS (EPS II) that can suppress the symbiotic defects of succinoglycan-deficient strains. EPS II is a polymer of modified glucose-(beta-1,3)-galactose subunits and is produced by Rm1021 derivatives carrying either an expR101 or mucR mutation. If the ability to synthesize succinoglycan is blocked genetically, expR101 derivatives of Rm1021 are nodulation-proficient, whereas mucR derivatives of Rm1021 are not. The difference in nodulation proficiency between these two classes of EPS II-producing strains is due to the specific production of a low molecular weight form of EPS II by expR101 strains. A low molecular weight EPS II fraction consisting of 15-20 EPS II disaccharide subunits efficiently allows nodule invasion by noninfective strains when present in amounts as low as 7 pmol per plant, suggesting that low molecular weight EPS II may act as a symbiotic signal during infection.
Resumo:
Immune cell-derived opioid peptides can activate opioid receptors on peripheral sensory nerves to inhibit inflammatory pain. The intrinsic mechanisms triggering this neuroimmune interaction are unknown. This study investigates the involvement of endogenous corticotropin-releasing factor (CRF) and interleukin-1beta (IL-1). A specific stress paradigm, cold water swim (CWS), produces potent opioid receptor-specific antinociception in inflamed paws of rats. This effect is dose-dependently attenuated by intraplantar but not by intravenous alpha-helical CRF. IL-1 receptor antagonist is ineffective. Similarly, local injection of antiserum against CRF, but not to IL-1, dose-dependently reverses this effect. Intravenous anti-CRF is only inhibitory at 10(4)-fold higher concentrations and intravenous CRF does not produce analgesia. Pretreatment of inflamed paws with an 18-mer 3'-3'-end inverted CRF-antisense oligodeoxynucleotide abolishes CWS-induced antinociception. The same treatment significantly reduces the amount of CRF extracted from inflamed paws and the number of CRF-immunostained cells without affecting gross inflammatory signs. A mismatch oligodeoxynucleotide alters neither the CWS effect nor CRF immunoreactivity. These findings identify locally expressed CRF as the predominant agent to trigger opioid release within inflamed tissue. Endogenous IL-1, circulating CRF or antiinflammatory effects, are not involved. Thus, an intact immune system plays an essential role in pain control, which is important for the understanding of pain in immunosuppressed patients with cancer or AIDS.
Resumo:
The segregation of thalamocortical inputs into eye-specific stripes in the developing cat or monkey visual cortex is prevented by manipulations that perturb or abolish neural activity in the visual pathway. Such findings show that proper development of the functional organization of visual cortex is dependent on normal patterns of neural activity. The generalisation of this conclusion to other sensory cortices has been questioned by findings that the segregation of thalamocortical afferents into a somatotopic barrel pattern in developing rodent primary somatosensory cortex (S1) is not prevented by activity blockade. We show that a temporary block of N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors in rat S1 during the critical period for barrel development disrupts the topographic refinement of thalamocortical connectivity and columnar organization. These effects are evident well after the blockade is ineffective and thus may be permanent. Our findings show that neural activity and specifically the activation of postsynaptic cortical neurons has a prominent role in establishing the primary sensory map in S1, as well as the topographic organization of higher order synaptic connections.
Resumo:
The tumor suppressor p53 contributes to maintaining genome stability by inducing a cell cycle arrest or apoptosis in response to conditions that generate DNA damage. Nuclear injection of linearized plasmid DNA, circular DNA with a large gap, or single-stranded circular phagemid is sufficient to induce a p53-dependent arrest. Supercoiled and nicked plasmid DNA, and circular DNA with a small gap were ineffective. Titration experiments indicate that the arrest mechanism in normal human fibroblasts can be activated by very few double strand breaks, and only one may be sufficient. Polymerase chain reaction assays showed that end-joining activity is low in serum-arrested human fibroblasts, and that higher joining activity occurs as cells proceed through G1 or into S phase. We propose that the exquisite sensitivity of the p53-dependent G1 arrest is partly due to inefficient repair of certain types of DNA damage in early G1.
Resumo:
Human immunodeficiency virus (HIV) type 2, the second AIDS-associated human retrovirus, differs from HIV-1 in its natural history, infectivity, and pathogenicity, as well as in details of its genomic structure and molecular behavior. We report here that HIV-2 inhibits the replication of HIV-1 at the molecular level. This inhibition was selective, dose-dependent, and nonreciprocal. The closely related simian immunodeficiency provirus also inhibited HIV-1. The selectivity of inhibition was shown by the observation that HIV-2 did not significantly downmodulate the expression of the unrelated murine leukemia virus; neither did the murine leukemia virus markedly affect HIV-1 or HIV-2 expression. Moreover, while HIV-2 potently inhibited HIV-1, the reverse did not happen, thus identifying yet another and remarkable difference between HIV-1 and HIV-2. Mutational analysis of the HIV-2 genome suggested that the inhibition follows a complex pathway, possibly involving multiple genes and redundant mechanisms. Introduction of inactivating mutations into the structural and regulatory/accessory genes did not render the HIV-2 provirus ineffective. Some of the HIV-2 gene defects, such as that of tat and rev genes, were phenotypically transcomplemented by HIV-1. The HIV-2 proviruses with deletions in the putative packaging signal and defective for virus replication were effective in inducing the suppressive phenotype. Though the exact mechanism remains to be defined, the inhibition appeared to be mainly due to an intracellular molecular event because it could not be explained solely on the basis of cell surface receptor mediated interference. The results support the notion that the inhibition likely occurred at the level of viral RNA, possibly involving competition between viral RNAs for some transcriptional factor essential for virus replication. Induction of a cytokine is another possibility. These findings might be relevant to the clinical-epidemiological data suggesting that infection with HIV-2 may offer some protection against HIV-1 infection.
Resumo:
Catalytic RNA molecules, or ribozymes, have generated significant interest as potential therapeutic agents for controlling gene expression. Although ribozymes have been shown to work in vitro and in cellular assays, there are no reports that demonstrate the efficacy of synthetic, stabilized ribozymes delivered in vivo. We are currently utilizing the rabbit model of interleukin 1-induced arthritis to assess the localization, stability, and efficacy of exogenous antistromelysin hammerhead ribozymes. The matrix metalloproteinase stromelysin is believed to be a key mediator in arthritic diseases. It seems likely therefore that inhibiting stromelysin would be a valid therapeutic approach for arthritis. We found that following intraarticular administration ribozymes were taken up by cells in the synovial lining, were stable in the synovium, and reduced synovial interleukin 1 alpha-induced stromelysin mRNA. This effect was demonstrated with ribozymes containing various chemical modifications that impart nuclease resistance and that recognize several distinct sites on the message. Catalytically inactive ribozymes were ineffective, thus suggesting a cleavage-mediated mechanism of action. These results suggest that ribozymes may be useful in the treatment of arthritic diseases characterized by dysregulation of metalloproteinase expression.
Resumo:
ADP-ribosylation factors (ARFs) are 20-kDa guanine nucleotide-binding proteins and are active in the GTP-bound state and inactive with GDP bound. ARF-GTP has a critical role in vesicular transport in several cellular compartments. Conversion of ARF-GDP to ARF-GTP is promoted by a guanine nucleotide-exchange protein (GEP). We earlier reported the isolation from bovine brain cytosol of a 700-kDa protein complex containing GEP activity that was inhibited by brefeldin A (BFA). Partial purification yielded an approximately 60-kDa BFA-insensitive GEP that enhanced binding of ARF1 and ARF3 to Golgi membranes. GEP has now been purified extensively from rat spleen cytosol in a BFA-insensitive, approximately 55-kDa form. It activated class I ARFs (ARFs 1 and 3) that were N-terminally myristoylated, but not nonmyristoylated ARFs from class-I, II, or III. GEP activity required MgCl2. In the presence of 0.6-0.8 mM MgCl2 and 1 mM EDTA, binding of guanosine 5'-[gamma[35S]thio]triphosphate ([35S]GTP gamma S) by ARF1 and ARF3 was equally high without and with GEP. At higher Mg2+ concentrations, binding without GEP was much lower; with 2-5 mM MgCl2, GEP-stimulated binding was maximal. The rate of GDP binding was much less than that of GTP gamma S with and without GEP. Phospholipids were necessary for GEP activity; phosphatidylinositol was more effective than phosphatidylserine, and phosphatidic acid was less so. Other phospholipids tested were ineffective. Maximal effects required approximately 200 microM phospholipid, with half-maximal activation at 15-20 microM. Release of bound [35S]GTP gamma S from ARF3 required the presence of both GEP and unlabeled GTP or GTP gamma S; GDP was much less effective. This characterization of the striking effects of Mg2+ concentration and specific phospholipids on the purified BFA-insensitive ARF GEP should facilitate experiments to define its function in vesicular transport.
Resumo:
d-alpha-Tocopherol, but not d-beta-tocopherol, negatively regulates proliferation of vascular smooth muscle cells at physiological concentrations. d-alpha-Tocopherol inhibits protein kinase C (PKC) activity, whereas d-beta-tocopherol is ineffective. Furthermore d-beta-tocopherol prevents the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol. The negative regulation by d-alpha-tocopherol of PKC activity appears to be the cause and not the effect of smooth muscle cell growth inhibition. d-alpha-Tocopherol does not act by binding to PKC directly but presumably by preventing PKC activation. It is concluded that, in vascular smooth muscle cells, d-alpha-tocopherol acts specifically through a nonantioxidant mechanism and exerts a negative control on a signal transduction pathway regulating cell proliferation.
Resumo:
The effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2)D3], a steroid hormone with immunomodulating properties, on nuclear factor kappa B (NF-kappa B) proteins was examined in in vitro activated normal human lymphocytes by Western blot analysis. Over a 72-hr period of activation, the expression of the 50-kDa NF-kappa B, p50, and its precursor, p105, was increased progressively. When cells were activated in the presence of 1,25(OH)2D3, the levels of the mature protein as well as its precursor were decreased. The effect of the hormone on the levels of p50 was demonstrable in the cytosolic and nuclear compartments; it required between 4 and 8 hr and was specific, as 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 were ineffective. Besides p50, 1,25(OH)2D3 decreased the levels of another NF-kappa B protein, namely c-rel. In addition, 1,25(OH)2D3 decreased the abundance of a specific DNA-protein complex formed upon incubation of nuclear extracts from activated lymphocytes with a labeled NF-kappa B DNA binding motif. Further, 1,25(OH)2D3 inhibited the transcriptional activity of NF-kappa B in Jurkat cells transiently transfected with a construct containing four tandem repeats of the NF-kappa B binding sequence of the immunoglobulin kappa light chain gene linked to the chloramphenicol acetyltransferase reporter gene. These observations demonstrate directly that there is de novo synthesis of NF-kappa B during human lymphocyte activation and suggest that this process is hormonally regulated.
Resumo:
Rhizobia were isolated from nodules off a stand of Lotus corniculatus established with a single inoculant strain, ICMP3153, 7 years earlier in an area devoid of naturalized Rhizobium loti. The isolates showed diversity in growth rate, Spe I fingerprint of genomic DNA, and hybridization pattern to genomic DNA probes. The 19% of isolates that grew at the same rate as strain ICMP3153 were the only isolates that had the same fingerprint as strain ICMP3153. Sequencing of part of the 16S rRNA gene of several diverse isolates confirmed that they were not derived from the inoculant strain. Nevertheless, all non-ICMP3153 strains gave EcoRI and Spe I hybridization patterns identical to ICMP3153 when hybridized to nodulation gene cosmids. Hybridization of digests generated by the very rare cutting enzyme Swa I revealed that the symbiotic DNA region (at least 105 kb) was chromosomally integrated in the strains. The results suggest that the diverse strains arose by transfer of chromosomal symbiotic genes from ICMP3153 to nonsymbiotic rhizobia in the environment.
Resumo:
Lipid A from several strains of the N2-fixing bacterium Rhizobium leguminosarum displays significant structural differences from Escherichia coli lipid A, one of which is the complete absence of phosphate groups. However, the first seven enzymes of E. coli lipid A biosynthesis, leading from UDP-GlcNAc to the phosphorylated intermediate, 2-keto-3-deoxyoctulosonate (Kdo2)-lipid IVA, are present in R. leguminosarum. We now describe a membrane-bound phosphatase in R. leguminosarum extracts that removes the 4' phosphate of Kdo2-lipid IVA. The 4' phosphatase is selective for substrates containing the Kdo domain. It is present in extracts of R. leguminosarum biovars phaseoli, viciae, and trifolii but is not detectable in E. coli and Rhizobium meliloti. A nodulation-defective strain (24AR) of R. leguminosarum biovar trifolii, known to contain a 4' phosphatase residue on its lipid A, also lacks measurable 4' phosphatase activity. The Kdo-dependent 4' phosphatase appears to be a key reaction in a pathway for generating phosphate-deficient lipid A.
Resumo:
Despite a rapidly increasing acceptance for a role of ATP as an extracellular mediator in several biological systems, the present report shows that ATP may mediate physiological responses in pituitary cells. We have now been able to demonstrate a specific action of ATP receptors to mediate the release of luteinizing hormone from gonadotropes and have coupled them with further studies that clearly show that ATP can be exocytotically released from cultured rat pituitary cells. Both ATP and UTP (100 microM) caused a > 14-fold increase in the rate of luteinizing hormone release from superfused cells. Adenosine 5'-[alpha, beta-methylene]triphosphate and 5'-[beta,gamma-methylene triphosphate were ineffective, and 2-methylthio-ATP had only a modest stimulatory effect. Homologous and heterologous desensitization occurred with UTP and ATP, and these did not have additive effects. Thus, nucleotides can be effective stimulators of luteinizing hormone release through a single class of ATP receptor (P2U subtype). The calcium ionophore A23187 provoked release of a substantial amount of ATP from pituitary cells in a concentration- and Ca(2+)-dependent manner, which was desensitized by pretreatment with A23187. This implies a possible paracrine and/or autocrine mechanism by which nucleotides may exert their effects on pituitary cells. In conclusion, we have provided strong evidence for a novel role of extracellular nucleotides as mediators in pituitary--in particular, in gonadotrope--function.