36 resultados para Hypertrophy Fibrosis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specific mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), the most common autosomal recessive fatal genetic disease of Caucasians, result in the loss of epithelial cell adenosine 3',5'-cyclic-monophosphate (cAMP)-stimulated Cl- conductance. We show that the influx of a fluorescent dye, dihydrorhodamine 6G (dR6G), is increased in cells expressing human CFTR after retrovirus- and adenovirus-mediated gene transfer. dR6G influx is stimulated by cAMP and is inhibited by antagonists of cAMP action. Dye uptake is ATP-dependent and inhibited by Cl- removal or the addition of 10 mM SCN-. Increased staining is associated with functional activation of CFTR Cl- permeability. dR6G staining enables both the fluorescent assessment of CFTR function and the identification of successfully corrected cells after gene therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis is a disease characterized by abnormalities in the epithelia of the lungs, intestine, salivary and sweat glands, liver, and reproductive systems, often as a result of inadequate hydration of their secretions. The primary defect in cystic fibrosis is the altered activity of a cAMP-activated Cl- channel, the cystic fibrosis transmembrane conductance regulator (CFTR) channel. However, it is not clear how a defect in the CFTR Cl- channel function leads to the observed pathological changes. Although much is known about the structural properties and regulation of the CFTR, little is known of its relationship to cellular functions other than the cAMP-dependent Cl- secretion. Here we report that cell volume regulation after hypotonic challenge is also defective in intestinal crypt epithelial cells isolated from CFTR -/- mutant mice. Moreover, the impairment of the regulatory volume decrease in CFTR -/- crypts appears to be related to the inability of a K+ conductance to provide a pathway for the exit of this cation during the volume adjustments. This provides evidence that the lack of CFTR protein may have additional consequences for the cellular function other than the abnormal cAMP-mediated Cl- secretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilizing an in vitro model system of cardiac muscle cell hypertrophy, we have identified a retinoic acid (RA)-mediated pathway that suppresses the acquisition of specific features of the hypertrophic phenotype after exposure to the alpha-adrenergic receptor agonist phenylephrine. RA at physiological concentrations suppresses the increase in cell size and induction of a genetic marker for hypertrophy, the atrial natriuretic factor (ANF) gene. RA also suppresses endothelin 1 pathways for cardiac muscle cell hypertrophy, but it does not affect the increase in cell size and ANF expression induced by serum stimulation. A trans-activation analysis using a transient transfection assay reveals that neonatal rat ventricular myocardial cells express functional RA receptors of both the retinoic acid receptor and retinoid X receptor (RAR and RXR) subtypes. Using synthetic agonists of RA, which selectively bind to RXR or RAR, our data indicate that RAR/RXR heterodimers mediate suppression of alpha-adrenergic receptor-dependent hypertrophy. These results suggest the possibility that a pathway for suppression of hypertrophy may exist in vivo, which may have potential therapeutic value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cystic fibrosis transmembrane conductance regulator (CFTR) functions as a Cl- channel that becomes activated after phosphorylation by cAMP-dependent protein kinase (PKA). We demonstrate that PKA also plays a crucial role in maintaining basal expression of the CFTR gene in the human colon carcinoma cell line T84. Inhibition of PKA activity by expression of a dominant-negative regulatory subunit or treatment with the PKA-selective inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89) caused a complete suppression of CFTR gene expression without affecting other constitutively active genes. Basal expression of a 2.2-kb region of the CFTR promoter linked to a luciferase reporter gene (CFTR-luc) exhibited the same dependence on PKA. The ability of cAMP to induce CFTR over basal levels is cell-type specific. In T84 cells, both the endogenous CFTR gene and CFTR-luc exhibited only a modest inducibility (approximately 2-fold), whereas in the human choriocarcinoma cell line JEG-3, CFTR-luc could be induced at least 4-fold. A variant cAMP-response element is present at position -48 to -41 in the CFTR promoter, and mutation of this sequence blocks basal expression. We conclude that cAMP, acting through PKA, is an essential regulator of basal CFTR gene expression and may mediate an induction of CFTR in responsive cell types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis (CF), a disorder of electrolyte transport manifest in the lungs, pancreas, sweat duct, and vas deferens, is caused by mutations in the CF transmembrane conductance regulator (CFTR). The CFTR protein has been shown to function as a cAMP-activated chloride channel and also regulates a separate protein, the outwardly rectifying chloride channel (ORCC). To determine the consequence of disease-producing mutations upon these functions, mutant CFTR was transiently expressed in Xenopus oocytes and in human airway epithelial cells lacking functional CFTR. Both G551D, a mutation that causes severe lung disease, and A455E, a mutation associated with mild lung disease, altered but did not abolish CFTR's function as a chloride channel in Xenopus oocytes. Airway epithelial cells transfected with CFTR bearing either A455E or G551D had levels of chloride conductance significantly greater than those of mock-transfected and lower than those of wild-type CFTR-transfected cells, as measured by chloride efflux. A combination of channel blockers and analysis of current-voltage relationships were used to dissect the contribution of CFTR and the ORCC to whole cell currents of transfected cells. While CFTR bearing either mutation could function as a chloride channel, only CFTR bearing A455E retained the function of regulating the ORCC. These results indicate that CF mutations can affect CFTR functions differently and suggest that severity of pulmonary disease may be more closely associated with the regulatory rather than chloride channel function of CFTR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the physiological roles of gp130 in detail and to determine the pathological consequence of abnormal activation of gp130, transgenic mice having continuously activated gp130 were created. This was carried out by mating mice from interleukin 6 (IL-6) and IL-6 receptor (IL-6R) transgenic lines. Offspring overexpressing both IL-6 and IL-6R showed constitutive tyrosine phosphorylation of gp130 and a downstream signaling molecule, acute phase response factor/signal transducer and activator of transcription 3. Surprisingly, the distinguishing feature of such offspring was hypertrophy of ventricular myocardium and consequent thickened ventricular walls of the heart, where gp130 is also expressed, in adulthood. Transgenic mice overexpressing either IL-6 or IL-6R alone did not show detectable myocardial abnormalities. Neonatal heart muscle cells from normal mice, when cultured in vitro, enlarged in response to a combination of IL-6 and a soluble form of IL-6R. The results suggest that activation of the gp130 signaling pathways leads to cardiac hypertrophy and that these signals might be involved in physiological regulation of myocardium.