103 resultados para Human blood
Resumo:
Glycoproteins expressing the Lutheran blood group antigens were isolated from human erythrocyte membranes and from human fetal liver. Amino acid sequence analyses allowed the design of redundant oligonucleotides that were used to generate a 459-bp, sequence-specific probe by PCR. A cDNA clone of 2400 bp was isolated from a human placental lambda gt 11 library and sequenced, and the deduced amino acid sequence was studied. The predicted mature protein is a type I membrane protein of 597 amino acids with five potential N-glycosylation sites. There are five disulfide-bonded, extracellular, immunoglobulin superfamily domains (two variable-region set and three constant-region set), a single hydrophobic, membrane-spanning domain, and a cytoplasmic domain of 59 residues. The overall structure is similar to that of the human tumor marker MUC 18 and the chicken neural adhesion molecule SC1. The extracellular domains and cytoplasmic domain contain consensus motifs for the binding of integrin and Src homology 3 domains, respectively, suggesting possible receptor and signal-transduction function. Immunostaining of human tissues demonstrated a wide distribution and provided evidence that the glycoprotein is under developmental control in liver and may also be regulated during differentiation in other tissues.
Resumo:
Human umbilical cord blood T lymphocytes (CBTL) respond to primary allostimulation but they do not proliferate upon rechallenge with alloantigen. Using PKH-26-labeled cells created a proliferative block that was observed only in CBTL that have divided during primary stimulation (PKH-26dim) but not in unstimulated (PKH-26bright) CBTL. CBTL’s secondary unresponsiveness resembles anergy and can be overcome by treatment with phorbol myristate acetate (PMA) and ionomycin or by high doses (50–100 units/ml) of interleukin 2. Addition of interleukin 2 to the primary cultures does not prevent the induction of secondary unresponsiveness. Defective Ras activation is detected in PKH-26dim CBTL during secondary response to alloantigen or after antibody-mediated T cell receptor stimulation whereas Ras is activated and proliferation is induced in CBTL during primary alloantigenic stimulation. Upon stimulation with PMA plus ionomycin, PMA plus alloantigen, but not alloantigen plus ionomycin, Ras is activated in PKH-26dim CBTL, and the block in proliferation is overcome. Correction of PKH-26dim CBTL’s proliferative defect correlates with PMA-induced Ras activation, suggesting a defect in the signaling pathway leading to Ras. Ras-independent signals, necessary but not sufficient to induce PKH-26dim CBTL proliferation, are provided by alloantigen exposure, as evident by the ability of PMA plus alloantigen but not PMA alone to overcome the proliferative block. Functional signal transduction through CD28 in PKH-26dim CBTL is supported by detectable CD28-mediated PI-3 kinase activation after PKH-26dim CBTL’s exposure to alloantigen or CD28 cross-linking. These results suggest that defective activation of Ras plays a key role in PKH-26dim CBTL’s secondary unresponsiveness and point to a defect along the T cell receptor rather than the CD28 signaling pathway.
Resumo:
Human T lymphotropic virus type 1 (HTLV-1) -associated myelopathy/tropic spastic paraparesis is a demyelinating inflammatory neurologic disease associated with HTLV-1 infection. HTLV-1 Tax11–19-specific cytotoxic T cells have been isolated from HLA-A2-positive patients. We have used a peptide-loaded soluble HLA-A2–Ig complex to directly visualize HTLV-1 Tax11–19-specific T cells from peripheral blood and cerebrospinal fluid without in vitro stimulation. Five of six HTLV-1-associated myelopathy/tropic spastic paraparesis patients carried a significant number (up to 13.87%) of CD8+ lymphocytes specific for the HTLV-1 Tax11–19 peptide in their peripheral blood, which were not found in healthy controls. Simultaneous comparison of peripheral blood and cerebrospinal fluid from one patient revealed 2.5-fold more Tax11–19-specific T cells in the cerebrospinal fluid (23.7% vs. 9.4% in peripheral blood lymphocyte). Tax11–19-specific T cells were seen consistently over a 9-yr time course in one patient as far as 19 yrs after the onset of clinical symptoms. Further analysis of HTLV-1 Tax11–19-specific CD8+ T lymphocytes in HAM/TSP patients showed different expression patterns of activation markers, intracellular TNF-α and γ-interferon depending on the severity of the disease. Thus, visualization of antigen-specific T cells demonstrates that HTLV-1 Tax11–19-specific CD8+ T cells are activated, persist during the chronic phase of the disease, and accumulate in cerebrospinal fluid, showing their pivotal role in the pathogenesis of this neurologic disease.
Resumo:
Malaria during the first pregnancy causes a high rate of fetal and neonatal death. The decreasing susceptibility during subsequent pregnancies correlates with acquisition of antibodies that block binding of infected red cells to chondroitin sulfate A (CSA), a receptor for parasites in the placenta. Here we identify a domain within a particular Plasmodium falciparum erythrocyte membrane protein 1 that binds CSA. We cloned a var gene expressed in CSA-binding parasitized red blood cells (PRBCs). The gene had eight receptor-like domains, each of which was expressed on the surface of Chinese hamster ovary cells and was tested for CSA binding. CSA linked to biotin used as a probe demonstrated that two Duffy-binding-like (DBL) domains (DBL3 and DBL7) bound CSA. DBL7, but not DBL3, also bound chondroitin sulfate C (CSC) linked to biotin, a negatively charged sugar that does not support PRBC adhesion. Furthermore, CSA, but not CSC, blocked the interaction with DBL3; both CSA and CSC blocked binding to DBL7. Thus, only the DBL3 domain displays the same binding specificity as PRBCs. Because protective antibodies present after pregnancy block binding to CSA of parasites from different parts of the world, DBL-3, although variant, may induce cross-reactive immunity that will protect pregnant women and their fetuses.
Resumo:
High endothelial venules (HEV) are specialized postcapillary venules found in lymphoid organs and chronically inflamed tissues that support high levels of lymphocyte extravasation from the blood. One of the major characteristics of HEV endothelial cells (HEVEC) is their capacity to incorporate large amounts of sulfate into sialomucin-type counter-receptors for the lymphocyte homing receptor L-selectin. Here, we show that HEVEC express two functional classes of sulfate transporters defined by their differential sensitivity to the anion-exchanger inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS), and we report the molecular characterization of a DIDS-resistant sulfate transporter from human HEVEC, designated SUT-1. SUT-1 belongs to the family of Na+-coupled anion transporters and exhibits 40–50% amino acid identity with the rat renal Na+/sulfate cotransporter, NaSi-1, as well as with the human and rat Na+/dicarboxylate cotransporters, NaDC-1/SDCT1 and NaDC-3/SDCT2. Functional expression studies in cRNA-injected Xenopus laevis oocytes showed that SUT-1 mediates high levels of Na+-dependent sulfate transport, which is resistant to DIDS inhibition. The SUT-1 gene mapped to human chromosome 7q33. Northern blotting analysis revealed that SUT-1 exhibits a highly restricted tissue distribution, with abundant expression in placenta. Reverse transcription–PCR analysis indicated that SUT-1 and the diastrophic dysplasia sulfate transporter (DTD), one of the two known human DIDS-sensitive sulfate transporters, are coexpressed in HEVEC. SUT-1 and DTD could correspond, respectively, to the DIDS-resistant and DIDS-sensitive components of sulfate uptake in HEVEC. Together, these results demonstrate that SUT-1 is a distinct human Na+-coupled sulfate transporter, likely to play a major role in sulfate incorporation in HEV.
Resumo:
Infection with Helicobacter pylori is associated with different human gastric diseases. Biochemical studies, in vitro adherence assays, and in vivo animal models revealed that epithelial attachment of H. pylori can be mediated by the blood-group antigen-binding adhesin (BabA) targeting human Lewisb surface epitopes. Studies with transgenic mice expressing the Lewisb epitope have shown that such attachment can alter disease outcome. In the current study, the presence of the babA2 gene encoding the adhesin was investigated in clinical isolates from a German population by using PCR and reverse transcription–PCR. A positive genotype was correlated to allelic variations in the genes encoding VacA and CagA and also to the prevalence of duodenal ulcer, distal gastric adenocarcinoma, mucosa-associated lymphoid tissue lymphoma, and antral gastritis. The presence of babA2 was significantly associated with duodenal ulcer (P = 0.0002) and adenocarcinoma (P = 0.033). In contrast, type 1 strains (vacAs1- and cagA-positive) were associated with only duodenal ulcer (P = 0.004) but not adenocarcinoma (P = 0.235). Genotype presence of babA2, vacAs1, and cagA (“triple-positive” strains) showed a highly significant correlation to the prevalence of ulcer (P = 0.000002) and adenocarcinoma (P = 0.014) and discriminated significantly better between disease outcome than did the current type 1 classification. These results indicate that the babA2 gene is of high clinical relevance and would be a useful marker to identify patients who are at higher risk for specific H. pylori-related diseases.
Resumo:
Split-thickness pig skin was transplanted on severe combined immunodeficient mice so that pig dermal microvessels spontaneously inosculated with mouse microvessels and functioned to perfuse the grafts. Pig endothelial cells in the healed grafts constitutively expressed class I and class II major histocompatibility complex molecules. Major histocompatibility complex molecule expression could be further increased by intradermal injection of pig interferon-γ (IFN-γ) but not human IFN-γ or tumor necrosis factor. Grafts injected with pig IFN-γ also developed a sparse infiltrate of mouse neutrophils and eosinophils without evidence of injury. Introduction of human peripheral blood mononuclear cells into the animals by intraperitoneal inoculation resulted in sparse perivascular mononuclear cell infiltrates in the grafts confined to the pig dermis. Injection of pig skin grafts on mice that received human peripheral blood mononuclear cells with pig IFN-γ (but not human IFN-γ or heat-inactivated pig IFN-γ) induced human CD4+ and CD8+ T cells and macrophages to more extensivley infiltrate the pig skin grafts and injure pig dermal microvessels. These findings suggest that human T cell-mediated rejection of xenotransplanted pig organs may be prevented if cellular sources of pig interferon (e.g., passenger lymphocytes) are eliminated from the graft.
Resumo:
Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole–imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located within RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.
Resumo:
The phylogeny of human T cell lymphotropic virus type II (HTLV-II) was investigated by using strains isolated from Amerindian and Pygmy tribes, in which the virus is maintained primarily through mother-to-child transmission via breast-feeding, and strains from intravenous drug users (IDUs), in which spread is mainly blood-borne via needle sharing. Molecular clock analysis showed that HTLV-II has two different evolutionary rates with the molecular clock for the virus in IDUs ticking 150–350 times faster than the one in endemically infected tribes: 2.7 × 10−4 compared with 1.71/7.31 × 10−7 nucleotide substitutions per site per year in the long terminal repeat region. This dramatic acceleration of the evolutionary rate seems to be related with the mode of transmission. Mathematical models showed the correlation of these two molecular clocks with an endemic spread of HTLV-II in infected tribes compared with the epidemic spread in IDUs. We also noted a sharp increase in the population size of the virus among IDUs during the last decades probably caused by the worldwide increase in intravenous drug use.
Resumo:
In one form of β-thalassemia, a genetic blood disorder, a mutation in intron 2 of the β-globin gene (IVS2-654) causes aberrant splicing of β-globin pre-mRNA and, consequently, β-globin deficiency. Treatment of mammalian cells stably expressing the IVS2-654 human β-globin gene with antisense oligonucleotides targeted at the aberrant splice sites restored correct splicing in a dose-dependent fashion, generating correct human β-globin mRNA and polypeptide. Both products persisted for up to 72 hr posttreatment. The oligonucleotides modified splicing by a true antisense mechanism without overt unspecific effects on cell growth and splicing of other pre-mRNAs. This novel approach in which antisense oligonucleotides are used to restore rather than to down-regulate the activity of the target gene is applicable to other splicing mutants and is of potential clinical interest.
Resumo:
Within hours after the ingestion of a blood meal, the mosquito midgut epithelium synthesizes a chitinous sac, the peritrophic matrix. Plasmodium ookinetes traverse the peritrophic matrix while escaping the mosquito midgut. Chitinases (EC 3.2.1.14) are critical for parasite invasion of the midgut: the presence of the chitinase inhibitor, allosamidin, in an infectious blood meal prevents oocyst development. A chitinase gene, PgCHT1, recently has been identified in the avian malaria parasite P. gallinaceum. We used the sequence of PgCHT1 to identify a P. falciparum chitinase gene, PfCHT1, in the P. falciparum genome database. PfCHT1 differs from PgCHT1 in that the P. falciparum gene lacks proenzyme and chitin-binding domains. PfCHT1 was expressed as an active recombinant enzyme in Escherichia coli. PfCHT1 shares with PgCHT1 a substrate preference unique to Plasmodium chitinases: the enzymes cleave tri- and tetramers of GlcNAc from penta- and hexameric oligomers and are unable to cleave smaller native chitin oligosaccharides. The pH activity profile of PfCHT1 and its IC50 (40 nM) to allosamidin are distinct from endochitinase activities secreted by P. gallinaceum ookinetes. Homology modeling predicts that PgCHT1 has a novel pocket in the catalytic active site that PfCHT1 lacks, which may explain the differential sensitivity of PfCHT1 and PgCHT1 to allosamidin. PfCHT1 may be the ortholog of a second, as yet unidentified, chitinase gene of P. gallinaceum. These results may allow us to develop novel strategies of blocking human malaria transmission based on interfering with P. falciparum chitinase.
Resumo:
Sickle cell anemia (SCA) and thalassemia are among the most common genetic diseases worldwide. Current approaches to the development of murine models of SCA involve the elimination of functional murine α- and β-globin genes and substitution with human α and βs transgenes. Recently, two groups have produced mice that exclusively express human HbS. The transgenic lines used in these studies were produced by coinjection of human α-, γ-, and β-globin constructs. Thus, all of the transgenes are integrated at a single chromosomal site. Studies in transgenic mice have demonstrated that the normal gene order and spatial organization of the members of the human β-globin gene family are required for appropriate developmental and stage-restricted expression of the genes. As the cis-acting sequences that participate in activation and silencing of the γ- and β-globin genes are not fully defined, murine models that preserve the normal structure of the locus are likely to have significant advantages for validating future therapies for SCA. To produce a model of SCA that recapitulates not only the phenotype, but also the genotype of patients with SCA, we have generated mice that exclusively express HbS after transfer of a 240-kb βs yeast artificial chromosome. These mice have hemolytic anemia, 10% irreversibly sickled cells in their peripheral blood, reticulocytosis, and other phenotypic features of SCA.
Resumo:
We have previously identified a cellular protein kinase activity termed TAK that specifically associates with the HIV types 1 and 2 Tat proteins. TAK hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II in vitro in a manner believed to activate transcription [Herrmann, C. H. & Rice, A. P. (1995) J. Virol. 69, 1612–1620]. We show here that the catalytic subunit of TAK is a known human kinase previously named PITALRE, which is a member of the cyclin-dependent family of proteins. We also show that TAK activity is elevated upon activation of peripheral blood mononuclear cells and peripheral blood lymphocytes and upon differentiation of U1 and U937 promonocytic cell lines to macrophages. Therefore, in HIV-infected individuals TAK may be induced in T cells following activation and in macrophages following differentiation, thus contributing to high levels of viral transcription and the escape from latency of transcriptionally silent proviruses.
Resumo:
Interleukin 10 (IL-10) is a recently described natural endogenous immunosuppressive cytokine that has been identified in human, murine, and other organisms. Human IL-10 (hIL-10) has high homology with murine IL-10 (mIL-10) as well as with an Epstein–Barr virus genome product BCRFI. This viral IL-10 (vIL-10) shares a number of activities with hIL-10. IL-10 significantly affects chemokine biology, because human IL-10 inhibits chemokine production and is a specific chemotactic factor for CD8+ T cells. It suppresses the ability of CD4+ T cells, but not CD8+ T cells, to migrate in response to IL-8. A nonapeptide (IT9302) with complete homology to a sequence of hIL-10 located in the C-terminal portion (residues 152–160) of the cytokine was found to possess activities that mimic some of those of hIL-10. These are: (i) inhibition of IL-1β-induced IL-8 production by peripheral blood mononuclear cell, (ii) inhibition of spontaneous IL-8 production by cultured human monocytes, (iii) induction of IL-1 receptor antagonistic protein production by human monocytes, (iv) induction of chemotactic migration of CD8+ human T lymphocytes in vitro, (v) desensitization of human CD8+ T cells resulting in an unresponsiveness toward rhIL-10-induced chemotaxis, (vi) suppression of the chemotactic response of CD4+ T human lymphocytes toward IL-8, (vii) induction of IL-4 production by cultured normal human CD4+ T cells, (viii) down-regulation of tumor necrosis factor-α production by CD8+ T cells, and (ix) inhibition of class II major histocompatibility complex antigen expression on IFN-γ-stimulated human monocytes. Another nonapeptide (IT9403) close to the NH2-terminal part of hIL-10 did not reveal cytokine synthesis inhibitory properties, but proved to be a regulator of mast cell proliferation. In conclusion, we have identified two functional domains of IL-10 exerting different IL-10 like activities, an observation that suggests that relatively small segments of these signal proteins are responsible for particular biological functions.
Resumo:
HIV entry into human cells is mediated by CD4 acting in concert with one of several members of the chemokine receptor superfamily. The resistance to HIV infection observed in individuals with defective CCR5 alleles indicated that this particular chemokine receptor plays a crucial role in the initiation of in vivo HIV infection. Expression of human CD4 transgene does not render mice susceptible to HIV infection because of structural differences between human and mouse CCR5. To ascertain whether expression of human CD4 and CCR5 is sufficient to make murine T lymphocytes susceptible to HIV infection, the lck promoter was used to direct the T cell-specific expression of human CD4 and CCR5 in transgenic mice. Peripheral blood mononuclear cells and splenocytes isolated from these mice expressed human CD4 and CCR5 and were infectible with selected M-tropic HIV isolates. After in vivo inoculation, HIV-infected cells were detected by DNA PCR in the spleen and lymph nodes of these transgenic mice, but HIV could not be cultured from these cells. This indicated that although transgenic expression of human CD4 and CCR5 permitted entry of HIV into the mouse cells, significant HIV infection was prevented by other blocks to HIV replication present in mouse cells. In addition to providing in vivo verification for the important role of CCR5 in T lymphocyte HIV infection, these transgenic mice represent a new in vivo model for understanding HIV pathogenesis by delineating species-specific cellular factors required for productive in vivo HIV infection. These mice should also prove useful for the assessment of potential therapeutic and preventative modalities, particularly vaccines.