159 resultados para Hiv-1 Protease


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein acetylation has been implicated in the regulation of HIV-1 gene transcription. Here, we have exploited the activities of four native histone acetyltransferase (HAT) complexes from yeast to directly test whether acetylation regulates HIV-1 transcription in vitro. HAT activities acetylating either histone H3 (SAGA, Ada, and NuA3) or H4 (NuA4) stimulate HIV-1 transcription from preassembled nucleosomal templates in an acetyl CoA-dependent manner. HIV-1 transcription from histone-free DNA is not affected by the HATs, indicating that these activities function in a chromatin-specific fashion. For Ada and NuA4, we demonstrate that acetylation of only histone proteins mediates enhanced transcription, suggesting that these complexes facilitate transcription at least in part by modifying histones. To address a potential mechanism by which HAT complexes stimulate transcription, we performed a restriction enzyme accessibility analysis. Each of the HATs increases the cutting efficiencies of restriction endonucleases targeting the HIV-1 chromatin templates in a manner not requiring transcription, suggesting that histone acetylation leads to nucleosome remodeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HIV-1 Tat protein is a potent chemoattractant for monocytes. We observed that Tat shows conserved amino acids corresponding to critical sequences of the chemokines, a family of molecules known for their potent ability to attract monocytes. Synthetic Tat and a peptide (CysL24–51) encompassing the “chemokine-like” region of Tat induced a rapid and transient Ca2+ influx in monocytes and macrophages, analogous to β-chemokines. Both monocyte migration and Ca2+ mobilization were pertussis toxin sensitive and cholera toxin insensitive. Cross-desensitization studies indicated that Tat shares receptors with MCP-1, MCP-3, and eotaxin. Tat was able to displace binding of β-chemokines from the β-chemokine receptors CCR2 and CCR3, but not CCR1, CCR4, and CCR5. Direct receptor binding experiments with the CysL24–51 peptide confirmed binding to cells transfected with CCR2 and CCR3. HIV-1 Tat appears to mimic β-chemokine features, which may serve to locally recruit chemokine receptor-expressing monocytes/macrophages toward HIV producing cells and facilitate activation and infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-affinity (Kd = 1 × 10−9 M) anti-platelet GPIIIa has been isolated from serum immune complexes of immunologic thrombocytopenic HIV-1-infected patients (HIV-1-ITP). Affinity-purified anti-platelet antibody reacted with a recombinant GPIIIa-(1–200) and -(1–66) fusion peptide and with an 18-mer GPIIIa-(49–66) peptide but not with seven other GPIIIa peptides spanning the length of GPIIIa. Most of the anti-platelet antibody (≈85%) could be adsorbed to and eluted from a GPIIIa-(49–66) affinity column. Binding of antibody to platelets could be inhibited by GPIIIa-(49–66) or an equimolar peptide-albumin conjugate (IC50 = 2 μM). Sera from 7 control subjects and 10 classic autoimmune thrombocytopenic patients gave background reactivity with GPIIIa-(49–66). HIV-1-ITP sera from 16 patients reacted with a mean OD 6-fold greater than background (range, 4- to 9-fold). Serum anti-GPIIIa-(49–66) concentration correlated inversely with platelet count, R2 = 0.51, n = 31, P < 0.0001. Because mouse platelet GPIIIa-(49–66) has 83% homology with human GPIIIa and mouse monocytes contain Fc receptors for the human IgG1-κ/λ antibody, we determined the in vivo effect of human anti-GPIIIa on mouse platelets. Affinity-purified antibody, 25–50 μg given i.p., resulted in a precipitous drop in platelet count to 30% of baseline, with nadir at 4 hr and return to normal in 36 hr. No effect was noted with control IgG. Acute thrombocytopenia could be prevented or reversed by the injection of the GPIIIa-(49–66) albumin conjugate at zero time or 2 hr after antibody, respectively, but not with a scrambled peptide-albumin conjugate. Thus HIV-1-ITP patients have high-affinity anti-platelet GPIIIa against a major antigenic determinant, GPIIIa-(49–66), which correlates inversely with platelet count and induces thrombocytopenia in mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein–protein interacting surfaces are usually large and intricate, making the rational design of small mimetics of these interfaces a daunting problem. On the basis of a structural similarity between the CDR2-like loop of CD4 and the β-hairpin region of a short scorpion toxin, scyllatoxin, we transferred the side chains of nine residues of CD4, central in the binding to HIV-1 envelope glycoprotein (gp120), to a structurally homologous region of the scorpion toxin scaffold. In competition experiments, the resulting 27-amino acid miniprotein inhibited binding of CD4 to gp120 with a 40 μM IC50. Structural analysis by NMR showed that both the backbone of the chimeric β-hairpin and the introduced side chains adopted conformations similar to those of the parent CD4. Systematic single mutations suggested that most CD4 residues from the CDR2-like loop were reproduced in the miniprotein, including the critical Phe-43. The structural and functional analysis performed suggested five additional mutations that, once incorporated in the miniprotein, increased its affinity for gp120 by 100-fold to an IC50 of 0.1–1.0 μM, depending on viral strains. The resulting mini-CD4 inhibited infection of CD4+ cells by different virus isolates. Thus, core regions of large protein–protein interfaces can be reproduced in miniprotein scaffolds, offering possibilities for the development of inhibitors of protein–protein interactions that may represent useful tools in biology and in drug discovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human endogenous retrovirus K (HERV-K) family of endogenous retroviruses consists of ≈50 proviral copies per haploid human genome. Herein, the HERV-Ks are shown to encode a sequence-specific nuclear RNA export factor, termed K-Rev, that is functionally analogous to the HIV-1 Rev protein. Like HIV-1 Rev, K-Rev binds to both the Crm1 nuclear export factor and to a cis-acting viral RNA target to activate nuclear export of unspliced RNAs. Surprisingly, this HERV-K RNA sequence, which is encoded within the HERV-K long terminal repeat, is also recognized by HIV-1 Rev. These data provide surprising evidence for an evolutionary link between HIV-1 and a group of endogenous retroviruses that first entered the human genome ≈30 million years ago.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleic acid sequence-based amplification (NASBA) has proved to be an ultrasensitive method for HIV-1 diagnosis in plasma even in the primary HIV infection stage. This technique was combined with fluorescence correlation spectroscopy (FCS) which enables online detection of the HIV-1 RNA molecules amplified by NASBA. A fluorescently labeled DNA probe at nanomolar concentration was introduced into the NASBA reaction mixture and hybridizing to a distinct sequence of the amplified RNA molecule. The specific hybridization and extension of this probe during amplification reaction, resulting in an increase of its diffusion time, was monitored online by FCS. As a consequence, after having reached a critical concentration of 0.1–1 nM (threshold for unaided FCS detection), the number of amplified RNA molecules in the further course of reaction could be determined. Evaluation of the hybridization/extension kinetics allowed an estimation of the initial HIV-1 RNA concentration that was present at the beginning of amplification. The value of initial HIV-1 RNA number enables discrimination between positive and false-positive samples (caused for instance by carryover contamination)—this possibility of discrimination is an essential necessity for all diagnostic methods using amplification systems (PCR as well as NASBA). Quantitation of HIV-1 RNA in plasma by combination of NASBA with FCS may also be useful in assessing the efficacy of anti-HIV agents, especially in the early infection stage when standard ELISA antibody tests often display negative results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vpu is an 81-residue membrane protein encoded by the HIV-1 genome. NMR experiments show that the protein folds into two distinct domains, a transmembrane hydrophobic helix and a cytoplasmic domain with two in-plane amphipathic α-helices separated by a linker region. Resonances in one-dimensional solid-state NMR spectra of uniformly 15N labeled Vpu are clearly segregated into two bands at chemical shift frequencies associated with NH bonds in a transmembrane α-helix, perpendicular to the membrane surface, and with NH bonds in the cytoplasmic helices parallel to the membrane surface. Solid-state NMR spectra of truncated Vpu2–51 (residues 2–51), which contains the transmembrane α-helix and the first amphipathic helix of the cytoplasmic domain, and of a construct Vpu28–81 (residues 28–81), which contains only the cytoplasmic domain, support this structural model of Vpu in the membrane. Full-length Vpu (residues 2–81) forms discrete ion-conducting channels of heterogeneous conductance in lipid bilayers. The most frequent conductances were 22 ± 3 pS and 12 ± 3 pS in 0.5 M KCl and 29 ± 3 pS and 12 ± 3 pS in 0.5 M NaCl. In agreement with the structural model, truncated Vpu2–51, which has the transmembrane helix, forms discrete channels in lipid bilayers, whereas the cytoplasmic domain Vpu28–81, which lacks the transmembrane helix, does not. This finding shows that the channel activity is associated with the transmembrane helical domain. The pattern of channel activity is characteristic of the self-assembly of conductive oligomers in the membrane and is compatible with the structural and functional findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemokines comprise a family of low-molecular-weight proteins that elicit a variety of biological responses including chemotaxis, intracellular Ca2+ mobilization, and activation of tyrosine kinase signaling cascades. A subset of chemokines, including regulated upon activation, normal T cell expressed and secreted (RANTES), macrophage inflammatory protein-1α (MIP-1α), and MIP-1β, also suppress infection by HIV-1. All of these activities are contingent on interactions between chemokines and cognate seven-transmembrane spanning, G protein-coupled receptors. However, these activities are strongly inhibited by glycanase treatment of receptor-expressing cells, indicating an additional dependence on surface glycosaminoglycans (GAG). To further investigate this dependence, we examined whether soluble GAG could reconstitute the biological activities of RANTES on glycanase-treated cells. Complexes formed between RANTES and a number of soluble GAG failed to induce intracellular Ca2+ mobilization on either glycanase-treated or untreated peripheral blood mononuclear cells and were unable to stimulate chemotaxis. In contrast, the same complexes demonstrated suppressive activity against macrophage tropic HIV-1. Complexes composed of 125I-labeled RANTES demonstrated saturable binding to glycanase-treated peripheral blood mononuclear cells, and such binding could be reversed partially by an anti-CCR5 antibody. These results suggest that soluble chemokine–GAG complexes represent seven-transmembrane ligands that do not activate receptors yet suppress HIV infection. Such complexes may be considered as therapeutic formulations for the treatment of HIV-1 infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The C-C chemokine receptor 5 (CCR5) plays a crucial role in facilitating the entry of macrophage-tropic strains of the HIV-1 into cells, but the mechanism of this phenomenon is completely unknown. To explore the role of CCR5-derived signal transduction in viral entry, we introduced mutations into two cytoplasmic domains of CCR5 involved in receptor-mediated function. Truncation of the terminal carboxyl-tail to eight amino acids or mutation of the highly conserved aspartate-arginine-tyrosine, or DRY, sequence in the second cytoplasmic loop of CCR5 effectively blocked chemokine-dependent activation of classic second messengers, intracellular calcium fluxes, and the cellular response of chemotaxis. In contrast, none of the mutations altered the ability of CCR5 to act as an HIV-1 coreceptor. We conclude that the initiation of signal transduction, the prototypic function of G protein coupled receptors, is not required for CCR5 to act as a coreceptor for HIV-1 entry into cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Follicular dendritic cells (FDC) provide a reservoir for HIV type 1 (HIV-1) that may reignite infection if highly active antiretroviral therapy (HAART) is withdrawn before virus on FDC is cleared. To estimate the treatment time required to eliminate HIV-1 on FDC, we develop deterministic and stochastic models for the reversible binding of HIV-1 to FDC via ligand–receptor interactions and examine the consequences of reducing the virus available for binding to FDC. Analysis of these models shows that the rate at which HIV-1 dissociates from FDC during HAART is biphasic, with an initial period of rapid decay followed by a period of slower exponential decay. The speed of the slower second stage of dissociation and the treatment time required to eradicate the FDC reservoir of HIV-1 are insensitive to the number of virions bound and their degree of attachment to FDC before treatment. In contrast, the expected time required for dissociation of an individual virion from FDC varies sensitively with the number of ligands attached to the virion that are available to interact with receptors on FDC. Although most virions may dissociate from FDC on the time scale of days to weeks, virions coupled to a higher-than-average number of ligands may persist on FDC for years. This result suggests that HAART may not be able to clear all HIV-1 trapped on FDC and that, even if clearance is possible, years of treatment will be required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identifying the immunologic and virologic consequences of discontinuing antiretroviral therapy in HIV-infected patients is of major importance in developing long-term treatment strategies for patients with HIV-1 infection. We designed a trial to characterize these parameters after interruption of highly active antiretroviral therapy (HAART) in patients who had maintained prolonged viral suppression on antiretroviral drugs. Eighteen patients with CD4+ T cell counts ≥ 350 cells/μl and viral load below the limits of detection for ≥1 year while on HAART were enrolled prospectively in a trial in which HAART was discontinued. Twelve of these patients had received prior IL-2 therapy and had low frequencies of resting, latently infected CD4 cells. Viral load relapse to >50 copies/ml occurred in all 18 patients independent of prior IL-2 treatment, beginning most commonly during weeks 2–3 after cessation of HAART. The mean relapse rate constant was 0.45 (0.20 log10 copies) day−1, which was very similar to the mean viral clearance rate constant after drug resumption of 0.35 (0.15 log10 copies) day−1 (P = 0.28). One patient experienced a relapse delay to week 7. All patients except one experienced a relapse burden to >5,000 RNA copies/ml. Ex vivo labeling with BrdUrd showed that CD4 and CD8 cell turnover increased after withdrawal of HAART and correlated with viral load whereas lymphocyte turnover decreased after reinitiation of drug treatment. Virologic relapse occurs rapidly in patients who discontinue suppressive drug therapy, even in patients with a markedly diminished pool of resting, latently infected CD4+ T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen-induced stimulation of the immune system can generate heterogeneity in CD4+ T cell division rates capable of explaining the temporal patterns seen in the decay of HIV-1 plasma RNA levels during highly active antiretroviral therapy. Posttreatment increases in peripheral CD4+ T cell counts are consistent with a mathematical model in which host cell redistribution between lymph nodes and peripheral blood is a function of viral burden. Model fits to patient data suggest that, although therapy reduces HIV replication below replacement levels, substantial residual replication continues. This residual replication has important consequences for long-term therapy and the evolution of drug resistance and represents a challenge for future treatment strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HIV-1 replication is inhibited by the incorporation of chain-terminating nucleotides at the 3′ end of the growing DNA chain. Here we show a nucleotide-dependent reaction catalyzed by HIV-1 reverse transcriptase that can efficiently remove the chain-terminating residue, yielding an extendible primer terminus. Radioactively labeled 3′-terminal residue from the primer can be transferred into a product that is resistant to calf intestinal alkaline phosphatase and sensitive to cleavage by snake venom phosphodiesterase. The products formed from different nucleotide substrates have unique electrophoretic migrations and have been identified as dinucleoside tri- or tetraphosphates. The reaction is inhibited by dNTPs that are complementary to the next position on the template (Ki ≈ 5 μM), suggesting competition between dinucleoside polyphosphate synthesis and DNA polymerization. Dinucleoside polyphosphate synthesis was inhibited by an HIV-1 specific non-nucleoside inhibitor and was absent in mutant HIV-1 reverse transcriptase deficient in polymerase activity, indicating that this activity requires a functional polymerase active site. We suggest that dinucleoside polyphosphate synthesis occurs by transfer of the 3′ nucleotide from the primer to the pyrophosphate moiety in the nucleoside di- or triphosphate substrate through a mechanism analogous to pyrophosphorolysis. Unlike pyrophosphorolysis, however, the reaction is nucleotide-dependent, is resistant to pyrophosphatase, and produces dinucleoside polyphosphates. Because it occurs at physiological concentrations of ribonucleoside triphosphates, this reaction may determine the in vivo activity of many nucleoside antiretroviral drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cells infected with HIV type 1 (HIV-1), the integrated viral promoter is present in a chromatin-bound conformation and is transcriptionally silent in the absence of stimulation. The HIV-1 Tat protein binds to a stem-loop structure at the 5′ end of viral mRNA and relieves this inhibition by inducing a remodeling of the nucleosome arrangement downstream of the transcription-initiation site. Here we show that Tat performs this activity by recruiting to the viral long terminal repeat (LTR) the transcriptional coactivator p300 and the closely related CREB-binding protein (CBP), having histone acetyltransferase (HAT) activity. Tat associates with HAT activity in human nuclear extracts and binds to p300 and CBP both in vitro and in vivo. Integrity of the basic domain of Tat is essential for this interaction. By a quantitative chromatin immunoprecipitation assay we show that the delivery of recombinant Tat induces the association of p300 and CBP with the chromosomally integrated LTR promoter. Expression of human p300 in both human and rodent cells increases the levels of Tat transactivation of the integrated LTR. These results reinforce the evidence that p300 and CBP have a pivotal function at both cellular and viral promoters and demonstrate that they also can be recruited by an RNA-targeted activator. Additionally, these findings have important implications for the understanding of the mechanisms of HIV-1 latency and reactivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infection by HIV-1 involves the fusion of viral and cellular membranes with subsequent transfer of viral genetic material into the cell. The HIV-1 envelope glycoprotein that mediates fusion consists of the surface subunit gp120 and the transmembrane subunit gp41. gp120 directs virion attachment to the cell–surface receptors, and gp41 then promotes viral–cell membrane fusion. A soluble, α-helical, trimeric complex within gp41 composed of N-terminal and C-terminal extraviral segments has been proposed to represent the core of the fusion-active conformation of the HIV-1 envelope. A thermostable subdomain denoted N34(L6)C28 can be formed by the N-34 and C-28 peptides connected by a flexible linker in place of the disulfide-bonded loop region. Three-dimensional structure of N34(L6)C28 reveals that three molecules fold into a six-stranded helical bundle. Three N-terminal helices within the bundle form a central, parallel, trimeric coiled coil, whereas three C-terminal helices pack in the reverse direction into three hydrophobic grooves on the surface of the N-terminal trimer. This thermostable subdomain displays the salient features of the core structure of the isolated gp41 subunit and thus provides a possible target for therapeutics designed selectively to block HIV-1 entry.