34 resultados para HOMO-LUMO
Resumo:
The retinal protein Nrl belongs to a distinct subfamily of basic motif-leucine zipper DNA-binding proteins and has been shown to bind extended AP-1-like sequence elements as a homo- or heterodimer. Here, we demonstrate that Nrl can positively regulate the expression of the photoreceptor cell-specific gene rhodopsin. Electrophoretic mobility-shift analysis reveals that a protein(s) in nuclear extracts from bovine retina and the Y79 human retinoblastoma cell line binds to a conserved Nrl response element (NRE) in the upstream promoter region of the rhodopsin gene. Nrl or an antigenically similar protein is shown to be part of the bound protein complex by supershift experiments using Nrl-specific antiserum. Cotransfection studies using an Nrl-expression plasmid and a luciferase reporter gene demonstrate that interaction of the Nrl protein with the -61 to -84 region of the rhodopsin promoter (which includes the NRE) stimulates expression of the reporter gene in CV-1 monkey kidney cells. This Nrl-mediated transactivation is specifically inhibited by coexpression of a naturally occurring truncated form of Nrl (dominant negative effect). Involvement of Nrl in photoreceptor gene regulation and its continued high levels of expression in the adult retina suggest that Nrl plays a significant role in controlling retinal function.
Resumo:
Tropomyosins consist of nearly 100% alpha-helix and assemble into parallel and in-register coiled-coil dimers. In vitro it has been established that nonmuscle as well as native muscle tropomyosins can form homodimers. However, a mixture of muscle alpha and beta tropomyosin subunits results in the formation of the thermodynamically more stable alpha/beta heterodimer. Although the assembly preference of the muscle tropomyosin heterodimer can be understood thermodynamically, the presence of multiple tropomyosin isoforms expressed in nonmuscle cells points toward a more complex principle for determining dimer formation. We have investigated the dimerization of rat tropomyosins in living cells by the use of epitope tagging with a 16-aa sequence of the influenza hemagglutinin. Employing transfection and immunoprecipitation techniques, we have analyzed the dimers formed by muscle and nonmuscle tropomyosins in rat fibroblasts. We demonstrate that the information for homo- versus heterodimerization is contained within the tropomyosin molecule itself and that the information for the selectivity is conferred by the alternatively spliced exons. These results have important implications for models of the regulation of cytoskeletal dynamics.
Resumo:
Protein-protein interactions allow the retinoid X receptor (RXR) to bind to cognate DNA as a homo- or a heterodimer and to participate in mediating the effects of a variety of hormones on gene transcription. Here we report a systematic study of the oligomeric state of RXR in the absence of a DNA template. We have used electrophoresis under nondenaturing conditions and chemical crosslinking to show that in solution, RXR alpha forms homodimers as well as homotetramers. The dissociation constants governing dimer and tetramer formation were estimated by fluorescence anisotropy studies. The results indicate that RXR tetramers are formed with a high affinity and that at protein concentrations higher than about 70 nM, tetramers will constitute the predominant species. Tetramer formation may provide an additional level of the regulation of gene transcription mediated by RXRs.
Resumo:
Brain-derived neurotrophic factor (BDNF), a member of the nerve growth factor (NGF) gene family, has been shown to influence the survival and differentiation of specific classes of neurons in vitro and in vivo. The possibility that neurotrophins are also involved in processes of neuronal plasticity has only recently begun to receive attention. To determine whether BDNF has a function in processes such as long-term potentiation (LTP), we produced a strain of mice with a deletion in the coding sequence of the BDNF gene. We then used hippocampal slices from these mice to investigate whether LTP was affected by this mutation. Homo- and heterozygous mutant mice showed significantly reduced LTP in the CA1 region of the hippocampus. The magnitude of the potentiation, as well as the percentage of cases in which LTP could be induced successfully, was clearly affected. According to the criteria tested, important pharmacological, anatomical, and morphological parameters in the hippocampus of these animals appear to be normal. These results suggest that BDNF might have a functional role in the expression of LTP in the hippocampus.