154 resultados para HIV-1 epidemic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vpu is an 81-residue membrane protein encoded by the HIV-1 genome. NMR experiments show that the protein folds into two distinct domains, a transmembrane hydrophobic helix and a cytoplasmic domain with two in-plane amphipathic α-helices separated by a linker region. Resonances in one-dimensional solid-state NMR spectra of uniformly 15N labeled Vpu are clearly segregated into two bands at chemical shift frequencies associated with NH bonds in a transmembrane α-helix, perpendicular to the membrane surface, and with NH bonds in the cytoplasmic helices parallel to the membrane surface. Solid-state NMR spectra of truncated Vpu2–51 (residues 2–51), which contains the transmembrane α-helix and the first amphipathic helix of the cytoplasmic domain, and of a construct Vpu28–81 (residues 28–81), which contains only the cytoplasmic domain, support this structural model of Vpu in the membrane. Full-length Vpu (residues 2–81) forms discrete ion-conducting channels of heterogeneous conductance in lipid bilayers. The most frequent conductances were 22 ± 3 pS and 12 ± 3 pS in 0.5 M KCl and 29 ± 3 pS and 12 ± 3 pS in 0.5 M NaCl. In agreement with the structural model, truncated Vpu2–51, which has the transmembrane helix, forms discrete channels in lipid bilayers, whereas the cytoplasmic domain Vpu28–81, which lacks the transmembrane helix, does not. This finding shows that the channel activity is associated with the transmembrane helical domain. The pattern of channel activity is characteristic of the self-assembly of conductive oligomers in the membrane and is compatible with the structural and functional findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemokines comprise a family of low-molecular-weight proteins that elicit a variety of biological responses including chemotaxis, intracellular Ca2+ mobilization, and activation of tyrosine kinase signaling cascades. A subset of chemokines, including regulated upon activation, normal T cell expressed and secreted (RANTES), macrophage inflammatory protein-1α (MIP-1α), and MIP-1β, also suppress infection by HIV-1. All of these activities are contingent on interactions between chemokines and cognate seven-transmembrane spanning, G protein-coupled receptors. However, these activities are strongly inhibited by glycanase treatment of receptor-expressing cells, indicating an additional dependence on surface glycosaminoglycans (GAG). To further investigate this dependence, we examined whether soluble GAG could reconstitute the biological activities of RANTES on glycanase-treated cells. Complexes formed between RANTES and a number of soluble GAG failed to induce intracellular Ca2+ mobilization on either glycanase-treated or untreated peripheral blood mononuclear cells and were unable to stimulate chemotaxis. In contrast, the same complexes demonstrated suppressive activity against macrophage tropic HIV-1. Complexes composed of 125I-labeled RANTES demonstrated saturable binding to glycanase-treated peripheral blood mononuclear cells, and such binding could be reversed partially by an anti-CCR5 antibody. These results suggest that soluble chemokine–GAG complexes represent seven-transmembrane ligands that do not activate receptors yet suppress HIV infection. Such complexes may be considered as therapeutic formulations for the treatment of HIV-1 infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The C-C chemokine receptor 5 (CCR5) plays a crucial role in facilitating the entry of macrophage-tropic strains of the HIV-1 into cells, but the mechanism of this phenomenon is completely unknown. To explore the role of CCR5-derived signal transduction in viral entry, we introduced mutations into two cytoplasmic domains of CCR5 involved in receptor-mediated function. Truncation of the terminal carboxyl-tail to eight amino acids or mutation of the highly conserved aspartate-arginine-tyrosine, or DRY, sequence in the second cytoplasmic loop of CCR5 effectively blocked chemokine-dependent activation of classic second messengers, intracellular calcium fluxes, and the cellular response of chemotaxis. In contrast, none of the mutations altered the ability of CCR5 to act as an HIV-1 coreceptor. We conclude that the initiation of signal transduction, the prototypic function of G protein coupled receptors, is not required for CCR5 to act as a coreceptor for HIV-1 entry into cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Follicular dendritic cells (FDC) provide a reservoir for HIV type 1 (HIV-1) that may reignite infection if highly active antiretroviral therapy (HAART) is withdrawn before virus on FDC is cleared. To estimate the treatment time required to eliminate HIV-1 on FDC, we develop deterministic and stochastic models for the reversible binding of HIV-1 to FDC via ligand–receptor interactions and examine the consequences of reducing the virus available for binding to FDC. Analysis of these models shows that the rate at which HIV-1 dissociates from FDC during HAART is biphasic, with an initial period of rapid decay followed by a period of slower exponential decay. The speed of the slower second stage of dissociation and the treatment time required to eradicate the FDC reservoir of HIV-1 are insensitive to the number of virions bound and their degree of attachment to FDC before treatment. In contrast, the expected time required for dissociation of an individual virion from FDC varies sensitively with the number of ligands attached to the virion that are available to interact with receptors on FDC. Although most virions may dissociate from FDC on the time scale of days to weeks, virions coupled to a higher-than-average number of ligands may persist on FDC for years. This result suggests that HAART may not be able to clear all HIV-1 trapped on FDC and that, even if clearance is possible, years of treatment will be required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identifying the immunologic and virologic consequences of discontinuing antiretroviral therapy in HIV-infected patients is of major importance in developing long-term treatment strategies for patients with HIV-1 infection. We designed a trial to characterize these parameters after interruption of highly active antiretroviral therapy (HAART) in patients who had maintained prolonged viral suppression on antiretroviral drugs. Eighteen patients with CD4+ T cell counts ≥ 350 cells/μl and viral load below the limits of detection for ≥1 year while on HAART were enrolled prospectively in a trial in which HAART was discontinued. Twelve of these patients had received prior IL-2 therapy and had low frequencies of resting, latently infected CD4 cells. Viral load relapse to >50 copies/ml occurred in all 18 patients independent of prior IL-2 treatment, beginning most commonly during weeks 2–3 after cessation of HAART. The mean relapse rate constant was 0.45 (0.20 log10 copies) day−1, which was very similar to the mean viral clearance rate constant after drug resumption of 0.35 (0.15 log10 copies) day−1 (P = 0.28). One patient experienced a relapse delay to week 7. All patients except one experienced a relapse burden to >5,000 RNA copies/ml. Ex vivo labeling with BrdUrd showed that CD4 and CD8 cell turnover increased after withdrawal of HAART and correlated with viral load whereas lymphocyte turnover decreased after reinitiation of drug treatment. Virologic relapse occurs rapidly in patients who discontinue suppressive drug therapy, even in patients with a markedly diminished pool of resting, latently infected CD4+ T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen-induced stimulation of the immune system can generate heterogeneity in CD4+ T cell division rates capable of explaining the temporal patterns seen in the decay of HIV-1 plasma RNA levels during highly active antiretroviral therapy. Posttreatment increases in peripheral CD4+ T cell counts are consistent with a mathematical model in which host cell redistribution between lymph nodes and peripheral blood is a function of viral burden. Model fits to patient data suggest that, although therapy reduces HIV replication below replacement levels, substantial residual replication continues. This residual replication has important consequences for long-term therapy and the evolution of drug resistance and represents a challenge for future treatment strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HIV-1 replication is inhibited by the incorporation of chain-terminating nucleotides at the 3′ end of the growing DNA chain. Here we show a nucleotide-dependent reaction catalyzed by HIV-1 reverse transcriptase that can efficiently remove the chain-terminating residue, yielding an extendible primer terminus. Radioactively labeled 3′-terminal residue from the primer can be transferred into a product that is resistant to calf intestinal alkaline phosphatase and sensitive to cleavage by snake venom phosphodiesterase. The products formed from different nucleotide substrates have unique electrophoretic migrations and have been identified as dinucleoside tri- or tetraphosphates. The reaction is inhibited by dNTPs that are complementary to the next position on the template (Ki ≈ 5 μM), suggesting competition between dinucleoside polyphosphate synthesis and DNA polymerization. Dinucleoside polyphosphate synthesis was inhibited by an HIV-1 specific non-nucleoside inhibitor and was absent in mutant HIV-1 reverse transcriptase deficient in polymerase activity, indicating that this activity requires a functional polymerase active site. We suggest that dinucleoside polyphosphate synthesis occurs by transfer of the 3′ nucleotide from the primer to the pyrophosphate moiety in the nucleoside di- or triphosphate substrate through a mechanism analogous to pyrophosphorolysis. Unlike pyrophosphorolysis, however, the reaction is nucleotide-dependent, is resistant to pyrophosphatase, and produces dinucleoside polyphosphates. Because it occurs at physiological concentrations of ribonucleoside triphosphates, this reaction may determine the in vivo activity of many nucleoside antiretroviral drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cells infected with HIV type 1 (HIV-1), the integrated viral promoter is present in a chromatin-bound conformation and is transcriptionally silent in the absence of stimulation. The HIV-1 Tat protein binds to a stem-loop structure at the 5′ end of viral mRNA and relieves this inhibition by inducing a remodeling of the nucleosome arrangement downstream of the transcription-initiation site. Here we show that Tat performs this activity by recruiting to the viral long terminal repeat (LTR) the transcriptional coactivator p300 and the closely related CREB-binding protein (CBP), having histone acetyltransferase (HAT) activity. Tat associates with HAT activity in human nuclear extracts and binds to p300 and CBP both in vitro and in vivo. Integrity of the basic domain of Tat is essential for this interaction. By a quantitative chromatin immunoprecipitation assay we show that the delivery of recombinant Tat induces the association of p300 and CBP with the chromosomally integrated LTR promoter. Expression of human p300 in both human and rodent cells increases the levels of Tat transactivation of the integrated LTR. These results reinforce the evidence that p300 and CBP have a pivotal function at both cellular and viral promoters and demonstrate that they also can be recruited by an RNA-targeted activator. Additionally, these findings have important implications for the understanding of the mechanisms of HIV-1 latency and reactivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infection by HIV-1 involves the fusion of viral and cellular membranes with subsequent transfer of viral genetic material into the cell. The HIV-1 envelope glycoprotein that mediates fusion consists of the surface subunit gp120 and the transmembrane subunit gp41. gp120 directs virion attachment to the cell–surface receptors, and gp41 then promotes viral–cell membrane fusion. A soluble, α-helical, trimeric complex within gp41 composed of N-terminal and C-terminal extraviral segments has been proposed to represent the core of the fusion-active conformation of the HIV-1 envelope. A thermostable subdomain denoted N34(L6)C28 can be formed by the N-34 and C-28 peptides connected by a flexible linker in place of the disulfide-bonded loop region. Three-dimensional structure of N34(L6)C28 reveals that three molecules fold into a six-stranded helical bundle. Three N-terminal helices within the bundle form a central, parallel, trimeric coiled coil, whereas three C-terminal helices pack in the reverse direction into three hydrophobic grooves on the surface of the N-terminal trimer. This thermostable subdomain displays the salient features of the core structure of the isolated gp41 subunit and thus provides a possible target for therapeutics designed selectively to block HIV-1 entry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently reported that HIV-1 Vif (virion infectivity factor) inhibits HIV-1 protease in vitro and in bacteria, suggesting that it may serve as the basis for the design of new protease inhibitors and treatment for HIV-1 infection. To evaluate this possibility, we synthesized peptide derivatives from the region of Vif, which inhibits protease, and tested their activity on protease. In an assay of cleavage of virion-like particles composed of HIV-1 Gag precursor polyprotein, full-length recombinant Vif, and a peptide consisting of residues 21–65 of Vif, but not a control peptide or BSA, inhibited protease activity. Vif21–65 blocked protease at a molar ratio of two to one. We then tested this peptide and a smaller peptide, Vif41–65, for their effects on HIV-1 infection of peripheral blood lymphocytes. Both Vif peptides inhibited virus expression below the limit of detection, but control peptides had no effect. To investigate its site of action, Vif21–65 was tested for its effect on Gag cleavage by protease during HIV-1 infection. We found that commensurate with its reduction of virus expression, Vif21–65 inhibited the cleavage of the polyprotein p55 to mature p24. These results are similar to those obtained by using Ro 31–8959, a protease inhibitor in clinical use. We conclude that Vif-derived peptides inhibit protease during HIV-1 infection and may be useful for the development of new protease inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously demonstrated that hybrid retrotransposons composed of the yeast Ty1 element and the reverse transcriptase (RT) of HIV-1 are active in the yeast Saccharomyces cerevisiae. The RT activity of these hybrid Ty1/HIV-1 (his3AI/AIDS RT; HART) elements can be monitored by using a simple genetic assay. HART element reverse transcription depends on both the polymerase and RNase H domains of HIV-1 RT. Here we demonstrate that the HART assay is sensitive to inhibitors of HIV-1 RT. (−)-(S)-8-Chloro-4,5,6,7-tetrahydro-5-methyl-6-(3-methyl-2-butenyl)imidazo[4,5,1-jk][1,4]-benzodiazepin-2(1H)-thione monohydrochloride (8 Cl-TIBO), a well characterized non-nucleoside RT inhibitor (NNRTI) of HIV-1 RT, blocks propagation of HART elements. HART elements that express NNRTI-resistant RT variants of HIV-1 are insensitive to 8 Cl-TIBO, demonstrating the specificity of inhibition in this assay. HART elements carrying NNRTI-resistant variants of HIV-1 RT can be used to identify compounds that are active against drug-resistant viruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Potent antiretroviral therapy can reduce plasma HIV RNA levels below the threshold of detection for periods of a year or more. The magnitude of HIV RNA reduction in the lymphoid tissue in patients with suppression of HIV RNA levels in plasma beyond 6 months has not been determined. We evaluated levels of HIV RNA and DNA and characterized resistance mutations in blood and inguinal lymph node biopsies obtained from 10 HIV-infected subjects who received 36–52 weeks of indinavir (IDV)/zidovudine (ZDV)/lamivudine (3TC), IDV, or ZDV/3TC. After 1 year of therapy, viral RNA levels in LN of individuals remained detectable but were log10 = 4 lower than in subjects on the triple drug regimen with interruption of therapy or in those treated with ZDV/3TC alone, who had viral loads in their lymph nodes indistinguishable from those expected for untreated patients. In all cases viral DNA remained detectable in lymph nodes and peripheral blood mononuclear cells (PBMC). When plasma virus suppression was incomplete, lymph node and PBMC cultures were positive and drug resistance developed. These studies indicate that pronounced and sustained suppression of plasma viremia by a potent antiretroviral combination is associated with low HIV RNA levels in the lymph nodes 1 year after treatment. Conversely, the persistence of even modest levels of plasma virus after 1 year of treatment reflects ongoing viral replication, the emergence of drug resistance, and the maintenance of high burdens of virus in the lymph nodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal and molecular structure of an RNA duplex corresponding to the high affinity Rev protein binding element (RBE) has been determined at 2.1-Å resolution. Four unique duplexes are present in the crystal, comprising two structural variants. In each duplex, the RNA double helix consists of an annealed 12-mer and 14-mer that form an asymmetric internal loop consisting of G-G and G-A noncanonical base pairs and a flipped-out uridine. The 12-mer strand has an A-form conformation, whereas the 14-mer strand is distorted to accommodate the bulges and noncanonical base pairing. In contrast to the NMR model of the unbound RBE, an asymmetric G-G pair with N2-N7 and N1-O6 hydrogen bonding, is formed in each helix. The G-A base pairing agrees with the NMR structure in one structural variant, but forms a novel water-mediated pair in the other. A backbone flip and reorientation of the G-G base pair is required to assume the RBE conformation present in the NMR model of the complex between the RBE and the Rev peptide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HIV-1 entry into CD4+ cells requires the sequential interactions of the viral envelope glycoproteins with CD4 and a coreceptor such as the chemokine receptors CCR5 and CXCR4. A plausible approach to blocking this process is to use small molecule antagonists of coreceptor function. One such inhibitor has been described for CCR5: the TAK-779 molecule. To facilitate the further development of entry inhibitors as antiviral drugs, we have explored how TAK-779 acts to prevent HIV-1 infection, and we have mapped its site of interaction with CCR5. We find that TAK-779 inhibits HIV-1 replication at the membrane fusion stage by blocking the interaction of the viral surface glycoprotein gp120 with CCR5. We could identify no amino acid substitutions within the extracellular domain of CCR5 that affected the antiviral action of TAK-779. However, alanine scanning mutagenesis of the transmembrane domains revealed that the binding site for TAK-779 on CCR5 is located near the extracellular surface of the receptor, within a cavity formed between transmembrane helices 1, 2, 3, and 7.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunodeficiency typically appears many years after initial HIV infection. This long, essentially asymptomatic period contributes to the transmission of HIV in human populations. In rare instances, clearance of HIV-1 infection has been observed, particularly in infants. There are also reports of individuals who have been frequently exposed to HIV-1 but remain seronegative for the virus, and it has been hypothesized that these individuals are resistant to infection by HIV-1. However, little is known about the mechanism of immune clearance or protection against HIV-1 in these high-risk individuals because it is difficult to directly demonstrate in vivo protective immunity. Although most of these high-risk individuals show an HIV-1-specific cell-mediated immune response using in vitro assays, their peripheral blood lymphocytes (PBLs) are still susceptible to HIV infection in tissue culture. To study this further in vivo, we have established a humanized SCID mouse infection model whereby T-, B-, and natural killer-cell defective SCID/beige mice that have been reconstituted with normal human PBLs can be infected with HIV-1. When the SCID/beige mice were reconstituted with PBLs from two different multiply exposed HIV-1 seronegative individuals, the mice showed resistance to infection by two strains of HIV-1 (macrophage tropic and T cell tropic), although the same PBLs were easily infected in vitro. Mice reconstituted with PBLs from non-HIV-exposed controls were readily infected. When the same reconstituted mice were depleted of human CD8 T cells, however, they became susceptible to HIV-1 infection, indicating that the in vivo protection required CD8 T cells. This provides clear experimental evidence that some multiply exposed, HIV-1-negative individuals have in vivo protective immunity that is CD8 T cell-dependent. Understanding the mechanism of such protective immunity is critical to the design and testing of effective prophylactic vaccines and immunotherapeutic regimens.