37 resultados para Gating currents
Resumo:
Binding of agonists to nicotinic acetylcholine receptors generates a sequence of changes that activate a cation-selective conductance. By measuring electrophysiological responses in chimeric alpha7/alpha3 receptors expressed in Xenopus oocytes, we have showed the involvement of the M2-M3 loop in coupling agonist binding to the channel gate. An aspartate residue therein, Asp-266 in the alpha7 subunit, was identified by site-directed mutagenesis as crucial, since mutants at this position exhibited very poor functional responses to three different nicotinic agonists. We have extended this investigation to another neuronal nicotinic receptor (alpha3/beta4), and found that a homologous residue in the beta4 subunit, Asp-268, played a similar role in coupling. These findings are consistent with a hypothesis that the aspartate residue in the M2-M3 loop, which is conserved in all homomer-forming alpha-type subunits and all neuronal beta-type subunits that combine to form functional receptors, is a major determinant of information transmission from binding site to channel gate in all neuronal nicotinic receptors.
Resumo:
The modulation of a family of cloned neuronal calcium channels by stimulation of a coexpressed mu opioid receptor was studied by transient expression in Xenopus oocytes. Activation of the morphine receptor with the synthetic enkephalin [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO) resulted in a rapid inhibition of alpha1A (by approximately 20%) and alpha1B (by approximately 55%) currents while alpha1C and alpha1E currents were not significantly affected. The opioid-induced effects on alpha1A and alpha1B currents were blocked by pertussis toxin and the GTP analogue guanosine 5'-[beta-thio]diphosphate. Similar to modulation of native calcium currents, DAMGO induced a slowing of the activation kinetics and exhibited a voltage-dependent inhibition that was partially relieved by application of strong depolarizing pulses. alpha1A currents were still inhibited in the absence of coexpressed Ca channel alpha2 and beta subunits, suggesting that the response is mediated by the alpha1 subunit. Furthermore, the sensitivity of alpha1A currents to DAMGO-induced inhibition was increased approximately 3-fold in the absence of a beta subunit. Overall, the results show that the alpha1A (P/Q type) and the alpha1B (N type) calcium channels are selectively modulated by a GTP-binding protein (G protein). The results raise the possibility of competitive interactions between beta subunit and G protein binding to the alpha1 subunit, shifting gating in opposite directions. At presynaptic terminals, the G protein-dependent inhibition may result in decreased synaptic transmission and play a key role in the analgesic effect of opioids and morphine.
Resumo:
The electrophoretic export of ATP against the import of ADP in mitochondria bridges the intra- versus extramitochondrial ATP potential gap. Here we report that the electrical nature of the ADP/ATP exchange by the mitochondrial ADP/ATP carrier (AAC) can be directly studied by measuring the electrical currents via capacitive coupling of AAC-containing vesicles on a planar lipid membrane. The currents were induced by the rapid liberation of ATP or ADP with UV flash photolysis from caged nucleotides. Six different transport modes of the AAC were studied: heteroexchange with either ADP or ATP inside the vesicles, initiated by photolysis of caged ATP or ADP; homoexchange with ADPex/ADPin or ATPex/ATPin; and caged ADP or ATP with unloaded vesicles. The heteroexchange produced the largest currents with the longest duration in line with the electrical charge difference ATP4- versus ADP3-. Surprisingly, also in the homoexchange and with unloaded vesicles, small currents were measured with shorter duration. In all three modes with caged ATP, a negative charge moved into the vesicles and with caged ADP it moved out of the vesicles. All currents were completely inhibited by a mixture of the inhibitors of the AAC, carboxyatractyloside and hongkrekate, which proves that the currents are exclusively due to AAC function. The observed charge movements in the heteroexchange system agree with the prediction from transport studies in mitochondria and reconstituted vesicles. The unexpected charge movements in the homoexchange or unloaded systems are interpreted to reveal transmembrane rearrangements of charged sites in the AAC when occupied with ADP or ATP. The results also indicate that not only ATP4- but also ADP3- contribute, albeit in opposite direction, to the electrical nature of the ADP/ATP exchange, which is at variance with former conclusions from biochemical transport studies. These measurements open up new avenues of studying the electrical interactions of ADP and ATP with the AAC.
Resumo:
The adult skeletal muscle Na+ channel mu1 possesses a highly conserved segment between subunit domains III and IV containing a consensus protein kinase C (PKC) phosphorylation site that, in the neuronal isoform, acts as a master control for "convergent" regulation by PKC and cAMP-dependent protein kinase. It lacks an approximately 200-aa segment between domains I and II though to modulate channel gating. We here demonstrate that mu1 is regulated by PKC (but not cAMP-dependent protein kinase) in a manner distinct from that observed for the neuronal isoforms, suggesting that under the same conditions muscle excitation could be uncoupled from motor neuron input. Maximal phosphorylation by PKC, in the presence of phosphatase inhibitors, reduced peak Na+ currents by approximately 90% by decreasing the maximal conductance, caused a -15 mV shift in the midpoint of steady-state inactivation, and caused a slight speeding of inactivation. Surprisingly, these effects were not affected by mutation of the conserved serine (serine-1321) in the interdomain III-IV loop. the pattern of current suppression and gating modification by PKC resembles the response of muscle Na+ channels to inhibitory factors present in the serum and cerebrospinal fluid of patients with Guillain-Barré syndrome, multiple sclerosis, and idiopathic demyelinating polyradiculoneuritis.
Resumo:
Voltage-gated channel proteins sense a change in the transmembrane electric field and respond with a conformational change that allows ions to diffuse across the pore-forming structure. Site-specific mutagenesis combined with electrophysiological analysis of expressed mutants in amphibian oocytes has previously established the S4 transmembrane segment as an element of the voltage sensor. Here, we show that mutations of conserved negatively charged residues in S2 and S3 of a brain K+ channel, thought of as countercharges for the positively charged residues in S4, selectively modulate channel gating without modifying the permeation properties. Mutations of Glu235 in S2 that neutralize or reverse charge increase the probability of channel opening and the apparent gating valence. In contrast, replacements of Glu272 by Arg or Thr268 by Asp in S3 decrease the open probability and the apparent gating valence. Residue Glu225 in S2 tolerated replacement only by acidic residues, whereas Asp258 in S3 was intolerant to any attempted change. These results imply that S2 and S3 are unlikely to be involved in channel lining, yet, together with S4, may be additional components of the voltage-sensing structure.
Resumo:
Cystic fibrosis (CF), a disorder of electrolyte transport manifest in the lungs, pancreas, sweat duct, and vas deferens, is caused by mutations in the CF transmembrane conductance regulator (CFTR). The CFTR protein has been shown to function as a cAMP-activated chloride channel and also regulates a separate protein, the outwardly rectifying chloride channel (ORCC). To determine the consequence of disease-producing mutations upon these functions, mutant CFTR was transiently expressed in Xenopus oocytes and in human airway epithelial cells lacking functional CFTR. Both G551D, a mutation that causes severe lung disease, and A455E, a mutation associated with mild lung disease, altered but did not abolish CFTR's function as a chloride channel in Xenopus oocytes. Airway epithelial cells transfected with CFTR bearing either A455E or G551D had levels of chloride conductance significantly greater than those of mock-transfected and lower than those of wild-type CFTR-transfected cells, as measured by chloride efflux. A combination of channel blockers and analysis of current-voltage relationships were used to dissect the contribution of CFTR and the ORCC to whole cell currents of transfected cells. While CFTR bearing either mutation could function as a chloride channel, only CFTR bearing A455E retained the function of regulating the ORCC. These results indicate that CF mutations can affect CFTR functions differently and suggest that severity of pulmonary disease may be more closely associated with the regulatory rather than chloride channel function of CFTR.