40 resultados para GROWTH-CONTROL
Resumo:
Phospholipids are the major components of cell membranes and are required for cellular growth. We studied membrane phosphatidylcholine (PtdCho) biosynthesis in neuronal cells undergoing neurite outgrowth, by using PC12 cells as a model system. When neurite outgrowth was induced by exposing PC12 cells to nerve growth factor for 2 and 4 days, the amounts of [14C]choline incorporated into [14C]phosphatidylcholine per cell (i.e., per DNA) increased approximately 5- and 10-fold, respectively, as compared with control cells, reflecting increases in the rate of PtdCho biosynthesis. [14C]choline uptake was not affected. Analysis of the three major PtdCho biosynthetic enzymes showed that the activity of CDPcholine:1,2-diacylglycerol cholinephosphotransferase was increased by approximately 50% after nerve growth factor treatment, but the activities of choline kinase or choline-phosphate cytidylyltransferase were unaltered; the cholinephosphotransferase displayed a high Km value (≈1,200 μM) for diacylglycerol. Moreover, free cellular diacylglycerol levels increased by approximately 1.5- and 4-fold on the second and fourth days, respectively. These data indicate that PtdCho biosynthesis is enhanced when PC12 cells sprout neurites, and the enhancement is mediated primarily by changes in cholinephosphotransferase activity and its saturation with diacylglycerol. This suggests a novel regulatory role for diacylglycerol in membrane phospholipid biosynthesis.
Resumo:
Leishmaniases are diseases caused by protozoa of the genus Leishmania that affect more than 20 million people in the world. The initial phase of the infection is fundamental for either the progression or control of the disease. The Leishmania parasites are injected in the skin as promastigotes and then, after been phagocytized by the host macrophages, rapidly transform into amastigotes. In this phase different nonspecific cellular and humoral elements participate. We have shown previously that insulin-like growth factor (IGF)-I that is constitutively present in the skin induces growth of Leishmania promastigotes. In the present paper we show further evidence for the importance of this factor: (i) IGF-I also can induce a growth response in Leishmania (Leishmania) mexicana amastigotes; (ii) IGF-I binds specifically to a putative single-site receptor on both promastigotes and amastigotes; (iii) IGF-I induces a rapid tyrosine phosphorylation of parasite proteins with different molecular mass in promastigotes and amastigotes of L. (L.) mexicana; and, finally, (iv) the cutaneous lesion in the mice when challenged by IGF-I-preactivated Leishmania (Viannia) panamensis is increased significantly because of inflammatory process and growth of parasites. We thus suggest that IGF-I is another important host factor participating in the Leishmania–host interplay in the early stage during the establishment of the infection and presumably also in the later stages.
Resumo:
A cross-sectional survey was made in 56 exceptionally healthy males, ranging in age from 20 to 84 years. Measurements were made of selected steroidal components and peptidic hormones in blood serum, and cognitive and physical tests were performed. Of those blood serum variables that gave highly significant negative correlations with age (r > −0.6), bioavailable testosterone (BT), dehydroepiandrosterone sulfate (DHEAS), and the ratio of insulin-like growth factor 1 (IGF-1) to growth hormone (GH) showed a stepwise pattern of age-related changes most closely resembling those of the age steps themselves. Of these, BT correlated best with significantly age-correlated cognitive and physical measures. Because DHEAS correlated well with BT and considerably less well than BT with the cognitive and physical measures, it seems likely that BT and/or substances to which BT gives rise in tissues play a more direct role in whatever processes are rate-limiting in the functions measured and that DHEAS relates more indirectly to these functions. The high correlation of IGF-1/GH with age, its relatively low correlation with BT, and the patterns of correlations of IGF-1/GH and BT with significantly age-correlated cognitive and physical measures suggest that the GH–IGF-1 axis and BT play independent roles in affecting these functions. Serial determinations made after oral ingestion of pregnenolone and data from the literature suggest there is interdependence of steroid metabolic systems with those operational in control of interrelations in the GH–IGF-1 axis. Longitudinal concurrent measurements of serum levels of BT, DHEAS, and IGF-1/GH together with detailed studies of their correlations with age-correlated functional measures may be useful in detecting early age-related dysregulations and may be helpful in devising ameliorative approaches.
Resumo:
Phytosulfokine-α [PSK-α, Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-Gln], a sulfated mitogenic peptide found in plants, strongly promotes proliferation of plant cells in culture at very low concentrations. Oryza sativa PSK (OsPSK) cDNA encoding a PSK-α precursor has been isolated. The cDNA is 725 base pairs long, and the 89-aa product, preprophytosulfokine, has a 22-aa hydrophobic region that resembles a cleavable leader peptide at its NH2 terminus. The PSK-α sequence occurs only once within the precursor, close to the COOH terminus. [Ser4]PSK-α was secreted by transgenic rice Oc cells harboring a mutated OsPSK cDNA, suggesting proteolytic processing from the larger precursor, a feature commonly found in animal systems. Whereas PSK-α in conditioned medium with sense transgenic Oc cells was 1.6 times as concentrated as in the control case, antisense transgenic Oc cells produced less than 60% of the control level. Preprophytosulfokine mRNA was detected at an elevated constitutive level in rice Oc culture cells on RNA blot analysis. Although PSK-α molecules have never been identified in any intact plant, reverse transcription–PCR analysis demonstrated that OsPSK is expressed in rice seedlings, indicating that PSK-α may be important for plant cell proliferation both in vitro and in vivo. DNA blot analysis demonstrated that OsPSK homologs may occur in dicot as well as monocot plants.
Resumo:
The PC cell line is a highly tumorigenic, insulin-independent, teratoma-derived cell line isolated from the nontumorigenic, insulin-dependent 1246 cell line. Studies of the PC cell growth properties have led to the purification of an 88-kDa secreted glycoprotein called PC cell-derived growth factor (PCDGF), which has been shown to stimulate the growth of PC cells as well as 3T3 fibroblasts. Sequencing of PCDGF cDNA demonstrated its identity to the precursor of a family of 6-kDa double-cysteine-rich polypeptides called epithelins or granulins (epithelin/granulin precursor). Since PCDGF was isolated from highly tumorigenic cells, its level of expression was examined in PC cells as well as in nontumorigenic and moderately tumorigenic cells from which PC cells were derived. Northern blot and Western blot analyses indicate that the levels of PCDGF mRNA and protein were very low in the nontumorigenic cells and increased in tumorigenic cell lines in a positive correlation with their tumorigenic properties. Experiments were performed to determine whether the autocrine production of PCDGF was involved in the tumorigenicity of PC cells. For this purpose, we examined the in vivo growth properties in syngeneic C3H mice of PC cells where PCDGF expression had been inhibited by transfection of antisense PCDGF cDNA. The results show that inhibition of PCDGF expression resulted in a dramatic inhibition of tumorigenicity of the transfected cells when compared with empty-vector control cells. These data demonstrate the importance in tumor formation of overexpression of the novel growth factor PCDGF.
Resumo:
Wnt family members are critical to many developmental processes, and components of the Wnt signaling pathway have been linked to tumorigenesis in familial and sporadic colon carcinomas. Here we report the identification of two genes, WISP-1 and WISP-2, that are up-regulated in the mouse mammary epithelial cell line C57MG transformed by Wnt-1, but not by Wnt-4. Together with a third related gene, WISP-3, these proteins define a subfamily of the connective tissue growth factor family. Two distinct systems demonstrated WISP induction to be associated with the expression of Wnt-1. These included (i) C57MG cells infected with a Wnt-1 retroviral vector or expressing Wnt-1 under the control of a tetracyline repressible promoter, and (ii) Wnt-1 transgenic mice. The WISP-1 gene was localized to human chromosome 8q24.1–8q24.3. WISP-1 genomic DNA was amplified in colon cancer cell lines and in human colon tumors and its RNA overexpressed (2- to >30-fold) in 84% of the tumors examined compared with patient-matched normal mucosa. WISP-3 mapped to chromosome 6q22–6q23 and also was overexpressed (4- to >40-fold) in 63% of the colon tumors analyzed. In contrast, WISP-2 mapped to human chromosome 20q12–20q13 and its DNA was amplified, but RNA expression was reduced (2- to >30-fold) in 79% of the tumors. These results suggest that the WISP genes may be downstream of Wnt-1 signaling and that aberrant levels of WISP expression in colon cancer may play a role in colon tumorigenesis.
Resumo:
Griffonia simplicifolia leaf lectin II (GSII), a plant defense protein against certain insects, consists of an N-acetylglucosamine (GlcNAc)-binding large subunit with a small subunit having sequence homology to class III chitinases. Much of the insecticidal activity of GSII is attributable to the large lectin subunit, because bacterially expressed recombinant large subunit (rGSII) inhibited growth and development of the cowpea bruchid, Callosobruchus maculatus (F). Site-specific mutations were introduced into rGSII to generate proteins with altered GlcNAc binding, and the different rGSII proteins were evaluated for insecticidal activity when added to the diet of the cowpea bruchid. At pH 5.5, close to the physiological pH of the cowpea bruchid midgut lumen, rGSII recombinant proteins were categorized as having high (rGSII, rGSII-Y134F, and rGSII-N196D mutant proteins), low (rGSII-N136D), or no (rGSII-D88N, rGSII-Y134G, rGSII-Y134D, and rGSII-N136Q) GlcNAc-binding activity. Insecticidal activity of the recombinant proteins correlated with their GlcNAc-binding activity. Furthermore, insecticidal activity correlated with the resistance to proteolytic degradation by cowpea bruchid midgut extracts and with GlcNAc-specific binding to the insect digestive tract. Together, these results establish that insecticidal activity of GSII is functionally linked to carbohydrate binding, presumably to the midgut epithelium or the peritrophic matrix, and to biochemical stability of the protein to digestive proteolysis.
Resumo:
Genetic inactivation of the transforming growth factor-β (TGF-β) signaling pathway can accelerate tumor progression in the mouse epidermal model of multistage carcinogenesis. By using an in vitro model of keratinocyte transformation that parallels in vivo malignant conversion to squamous cell carcinoma, we show that v-rasHa transduced primary TGF-β1−/− keratinocytes and keratinocytes expressing a TGF-β type II dominant-negative receptor transgene have significantly higher frequencies of spontaneous transformation than control genotypes. Malignant transformation in the TGF-β1−/− keratinocytes is preceded by aneuploidy and accumulation of chromosomal aberrations. Similarly, transient inactivation of TGF-β signaling with a type II dominant-negative receptor adenovirus causes rapid changes in ploidy. Exogenous TGF-β1 can suppress aneuploidy, chromosome breaks, and malignant transformation of the TGF-β1−/− keratinocytes at concentrations that do not significantly arrest cell proliferation. These results point to genomic instability as a mechanism by which defects in TGF-β signaling could accelerate tumor progression in mouse multistage carcinogenesis.
Resumo:
Previously, we showed that retinoic acid (RA) binds to the mannose-6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) with high affinity, suggesting that M6P/IGF2R may be a receptor for RA. Here, we show that RA, after 2–3 h of incubation with cultured neonatal-rat cardiac fibroblasts, dramatically alters the intracellular distribution of M6P/IGF2R as well as that of cathepsin B (a lysosomal protease bearing M6P). Immunofluorescence techniques indicate that this change in intracellular distribution is characterized by a shift of the proteins from the perinuclear area to cytoplasmic vesicles. The effect of RA was neither blocked by an RA nuclear receptor antagonist (AGN193109) nor mimicked by a selective RA nuclear-receptor agonist (TTNPB). Furthermore, the RA-induced translocation of cathepsin B was not observed in M6P/IGF2R-deficient P388D1 cells but occurred in stably transfected P388D1 cells expressing the receptor, suggesting that the effect of RA might be the result of direct interaction with M6P/IGF2R, rather than the result of binding to the nuclear receptors. These observations not only support the idea that M6P/IGF2R mediates an RA-response pathway but also indicate a role for RA in control of intracellular trafficking of lysosomal enzymes. Therefore, our observations may have important implications for the understanding of the diverse biological effects of retinoids.
Resumo:
The mouse insulin-like growth factor 2 (Igf2) locus is a complex genomic region that produces multiple transcripts from alternative promoters. Expression at this locus is regulated by parental imprinting. However, despite the existence of putative imprinting control elements in the Igf2 upstream region, imprinted transcriptional repression is abolished by null mutations at the linked H19 locus. To clarify the extent to which the Igf2 upstream region contains autonomous imprinting control elements we have performed functional and comparative analyses of the region in the mouse and human. Here we report the existence of multiple, overlapping imprinted (maternally repressed) sense and antisense transcripts that are associated with a tandem repeat in the mouse Igf2 upstream region. Regions flanking the repeat exhibit tissue-specific parental allelic methylation patterns, suggesting the existence of tissue-specific control elements in the upstream region. Studies in H19 null mice indicate that both parental allelic methylation and monoallelic expression of the upstream transcripts depends on an intact H19 gene acting in cis. The homologous region in human IGF2 is structurally conserved, with the significant exception that it does not contain a tandem repeat. Our results support the proposal that tandem repeats act to target methylation to imprinted genetic loci.