52 resultados para G alpha olf
Resumo:
We addressed the question as to which subtypes of G protein subunits mediate the activation of phospholipase C-beta by the muscarinic m1 receptor. We used the rat basophilic leukemia cell line RBL-2H3-hm1 stably transfected with the human muscarinic m1 receptor cDNA. We microinjected antisense oligonucleotides into the nuclei of the cells to inhibit selectively the expression of G protein subunits; 48 hr later muscarinic receptors were activated by carbachol, and the increase in free cytosolic calcium concentration ([Ca2+]i) was measured. Antisense oligonucleotides directed against the mRNA coding for alpha(q) and alpha11 subunits both suppressed the carbachol-induced increase in [Ca2+]i. In cells injected with antisense oligonucleotides directed against alpha(o1) and alpha14 subunits, the carbachol effect was unchanged. A corresponding reduction of Galpha(q), and Galpha11 proteins by 70-80% compared to uninjected cells was immunochemically detected 2 days after injection of a mixture of alpha(q) and alpha11 antisense oligonucleotides. Expression of Galpha(q) and Galpha11 completely recovered after 4 days. Cells injected with antisense oligonucleotides directed against the mRNAs encoding for beta1, beta4, and gamma4 subunits showed a suppression of the carbachol-induced increase in [Ca2+]i compared to uninjected cells measured at the same time from the same coverslip, whereas in cells injected with antisense oligonucleotides directed against the beta2, beta3, gamma1, gamma2, gamma3, gamma5, and gamma7 subunits, no suppression of carbachol effect was observed. In summary, the results from RBL-2H3-hm1 cells indicate that the m1 receptor utilizes a G protein complex composed of the subunits alpha(q), alpha11, beta1, beta4, and gamma4 to activate phospholipase C.
Resumo:
Model AB, a 20-amino acid peptide that was designed to adopt an alpha beta tertiary structure stabilized by hydrophobic interactions between residues in adjacent helical and extended segments, exhibited large pKa shifts of several ionizable groups and slow hydrogen/deuterium exchange rates of nearly all the peptide amide groups [Butcher, D. J., Bruch, M. D. & Moe, G. T. (1995) Biopolymers 36, 109-120]. These properties, which depend on structure and hydration, are commonly observed in larger proteins but are quite unusual for small peptides. To identify which of several possible features of the peptide design are most important in determining these properties, several closely related analogs of Model AB were characterized by CD and NMR spectroscopy. The results show that hydrophobic interactions between adjacent helical and extended segments are structure-determining and have the additional effect of altering water-peptide interactions over much of the peptide surface. These results may have important implications for understanding mechanisms of protein folding and for the design of independently folding peptides.
Resumo:
beta 2-Microglobulin is an essential subunit of major histocompatibility complex (Mhc) class I molecules, which present antigenic peptides to T lymphocytes. We sequenced a number of cDNAs and two genomic clones corresponding to chicken beta 2-microglobulin. The chicken beta 2-microglobulin gene has a similar genomic organization but smaller introns and higher G+C content than mammalian beta 2-microglobulin genes. The promoter region is particularly G+C-rich and contains, in addition to interferon regulatory elements, potential S/W, X, and Y boxes that were originally described for mammalian class II but not class I alpha or beta 2-microglobulin genes. There is a single chicken beta 2-microglobulin gene that has little polymorphism in the coding region. Restriction fragment length polymorphisms from Mhc homozygous lines, Mhc congenic lines, and backcross families, as well as in situ hybridization, show that the beta 2-microglobulin gene is located on a microchromosome different from the one that contains the chicken Mhc. We propose that the structural similarities between the beta 2-microglobulin and Mhc genes in the chicken are due to their presence on microchromosomes and suggest that these features and the microchromosomes appeared by deletion of DNA in the lineage leading to the birds.
Resumo:
Thyrotropin is the primary hormone that, via one heptahelical receptor, regulates thyroid cell functions such as secretion, specific gene expression, and growth. In human thyroid, thyrotropin receptor activation leads to stimulation of the adenylyl cyclase and phospholipase C cascades. However, the G proteins involved in thyrotropin receptor action have been only partially defined. In membranes of human thyroid gland, we immunologically identified alpha subunits of the G proteins Gs short, Gs long, Gi1, Gi2, Gi3, G(o) (Go2 and another form of Go, presumably Go1), Gq, G11, G12, and G13. Activation of the thyrotropin (TSH) receptor by bovine TSH led to increased incorporation of the photoreactive GTP analogue [alpha-32P]GTP azidoanilide into immunoprecipitated alpha subunits of all G proteins detected in thyroid membranes. This effect was receptor-dependent and not due to direct G protein stimulation because it was mimicked by TSH receptor-stimulating antibodies of patients suffering from Grave disease and was abolished by a receptor-blocking antiserum from a patient with autoimmune hypothyroidism. The TSH-induced activation of individual G proteins occurred with EC50 values of 5-50 milliunits/ml, indicating that the activated TSH receptor coupled with similar potency to different G proteins. When human thyroid slices were pretreated with pertussis toxin, the TSH receptor-mediated accumulation of cAMP increased by approximately 35% with TSH at 1 milliunits/ml, indicating that the TSH receptor coupled to Gs and G(i). Taken together, these findings show that, at least in human thyroid membranes, in which the protein is expressed at its physiological levels, the TSH receptor resembles a naturally occurring example of a general G protein-activating receptor.
Resumo:
In immature T cells the T-cell receptor (TCR) beta-chain gene is rearranged and expressed before the TCR alpha-chain gene. At this stage TCR beta chain can form disulfide-linked heterodimers with the pre-T-cell receptor alpha chain (pTalpha). Using the recently isolated murine pTalpha cDNA as a probe, we have isolated the human pTalpha cDNA. The complete nucleotide sequence predicts a mature protein of 282 aa consisting of an extracellular immunoglobulin-like domain, a connecting peptide, a transmembrane region, and a long cytoplasmic tail. Amino acid sequence comparison of human pTalpha with the mouse pTalpha molecule reveals high sequence homology in the extracellular as well as the transmembrane region. In contrast, the cytoplasmic region differs in amino acid composition and in length from the murine homologue. The human pTalpha gene is expressed in immature but not mature T cells and is located at the p21.2-p12 region of the short arm of chromosome 6.
Resumo:
d-alpha-Tocopherol, but not d-beta-tocopherol, negatively regulates proliferation of vascular smooth muscle cells at physiological concentrations. d-alpha-Tocopherol inhibits protein kinase C (PKC) activity, whereas d-beta-tocopherol is ineffective. Furthermore d-beta-tocopherol prevents the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol. The negative regulation by d-alpha-tocopherol of PKC activity appears to be the cause and not the effect of smooth muscle cell growth inhibition. d-alpha-Tocopherol does not act by binding to PKC directly but presumably by preventing PKC activation. It is concluded that, in vascular smooth muscle cells, d-alpha-tocopherol acts specifically through a nonantioxidant mechanism and exerts a negative control on a signal transduction pathway regulating cell proliferation.
Resumo:
Each G protein-coupled receptor recognizes only a distinct subset of the many structurally closely related G proteins expressed within a cell. How this selectively is achieved at a molecular level is not well understood, particularly since no specific point-to-point contact sites between a receptor and its cognate G protein(s) have been identified. In this study, we demonstrate that a 4-aa epitope on the m2 muscarinic acetylcholine receptor, a prototypical Gi/o-coupled receptor, can specifically recognize the C-terminal 5 aa of alpha subunits of the Gi/o protein family. The m2 receptor residues involved in this interaction are predicted to be located on one side of an alpha-helical receptor region present at the junction between the third intracellular loop and the sixth transmembrane domain. Coexpression studies with hybrid m2/m3 muscarinic receptors and mutant G-protein alpha q subunits showed that the receptor/G-protein contact site identified in this study is essential for coupling specificity and G-protein activation.
Resumo:
Golgi alpha-mannosidase II (alpha-MII) is an enzyme involved in the processing of N-linked glycans. Using a previously isolated murine cDNA clone as a probe, we have isolated cDNA clones encompassing the human alpha-MII cDNA open reading frame and initiated isolation of human genomic clones. During the isolation of genomic clones, genes related to that encoding alpha-MII were isolated. One such gene was found to encode an isozyme, designated alpha-MIIx. A 5-kb cDNA clone encoding alpha-MIIx was then isolated from a human melanoma cDNA library. However, comparison between alpha-MIIx and alpha-MII cDNAs suggested that the cloned cDNA encodes a truncated polypeptide with 796 amino acid residues, while alpha-MII consists of 1144 amino acid residues. To reevaluate the sequence of alpha-MIIx cDNA, polymerase chain reaction (PCR) was performed with lymphocyte mRNAs. Comparison of the sequence of PCR products with the alpha-MIIx genomic sequence revealed that alternative splicing of the alpha-MIIx transcript can result in an additional transcript encoding a 1139-amino acid polypeptide. Northern analysis showed transcription of alpha-MIIx in various tissues, suggesting that the alpha-MIIx gene is a housekeeping gene. COS cells transfected with alpha-MIIx cDNA containing the full-length open reading frame showed an increase of alpha-mannosidase activity. The alpha-MIIx gene was mapped to human chromosome 15q25, whereas the alpha-MII gene was mapped to 5q21-22.
Resumo:
To examine the in vivo role(s) of type I interferons (IFNs) and to determine the role of a component of the type I IFN receptor (IFNAR1) in mediating responses to these IFNs, we generated mice with a null mutation (-/-) in the IFNAR1 gene. Despite compelling evidence for modulation of cell proliferation and differentiation by type I IFNs, there were no gross signs of abnormal fetal development or morphological changes in adult IFNAR1-/- mice. However, abnormalities of hemopoietic cells were detected in IFNAR1 -/- mice. Elevated levels of myeloid lineage cells were detected in peripheral blood and bone marrow by staining with Mac-1 and Gr-1 antibodies. Furthermore, bone marrow macrophages from IFNAR1 -/- mice showed abnormal responses to colony-stimulating factor 1 and lipopolysaccharide. IFNAR1 -/- mice were highly susceptible to viral infection: viral titers were undetected 24 hr after infection of IFNAR1 +/+ mice but were extremely high in organs of IFNAR1 -/- mice, demonstrating that the type I IFN system is a major acute antiviral defence. In cell lines derived from IFNAR1 -/- mice, there was no signaling in response to IFN-alpha or -beta as measured by induction of 2'-5' oligoadenylate synthetase, antiviral, or antiproliferative responses. Importantly, these studies demonstrate that type I IFNs function in the development and responses of myeloid lineage cells, particularly macrophages, and that the IFNAR1 receptor component is essential for antiproliferative and antiviral responses to IFN-alpha and -beta.
Resumo:
Cytokines are now recognized to play important roles in the physiology of the central nervous system (CNS) during health and disease. Tumor necrosis factor alpha (TNF-alpha) has been implicated in the pathogenesis of several human CNS disorders including multiple sclerosis, AIDS dementia, and cerebral malaria. We have generated transgenic mice that constitutively express a murine TNF-alpha transgene, under the control of its own promoter, specifically in their CNS and that spontaneously develop a chronic inflammatory demyelinating disease with 100% penetrance from around 3-8 weeks of age. High-level expression of the transgene was seen in neurons distributed throughout the brain. Disease is manifested by ataxia, seizures, and paresis and leads to early death. Histopathological analysis revealed infiltration of the meninges and CNS parenchyma by CD4+ and CD8+ T lymphocytes, widespread reactive astrocytosis and microgliosis, and focal demyelination. The direct action of TNF-alpha in the pathogenesis of this disease was confirmed by peripheral administration of a neutralizing anti-murine TNF-alpha antibody. This treatment completely prevented the development of neurological symptoms, T-cell infiltration into the CNS parenchyma, astrocytosis, and demyelination, and greatly reduced the severity of reactive microgliosis. These results demonstrate that overexpression of TNF-alpha in the CNS can cause abnormalities in nervous system structure and function. The disease induced in TNF-alpha transgenic mice shows clinical and histopathological features characteristic of inflammatory demyelinating CNS disorders in humans, and these mice represent a relevant in vivo model for their further study.
Resumo:
The mechanism of mitogen-activated protein (MAP) kinase activation by pertussis toxin-sensitive Gi-coupled receptors is known to involve the beta gamma subunits of heterotrimeric G proteins (G beta gamma), p21ras activation, and an as-yet-unidentified tyrosine kinase. To investigate the mechanism of G beta gamma-stimulated p21ras activation, G beta gamma-mediated tyrosine phosphorylation was examined by overexpressing G beta gamma or alpha 2-C10 adrenergic receptors (ARs) that couple to Gi in COS-7 cells. Immunoprecipitation of phosphotyrosine-containing proteins revealed a 2- to 3-fold increase in the phosphorylation of two proteins of approximately 50 kDa (designated as p52) in G beta gamma-transfected cells or in alpha 2-C10 AR-transfected cells stimulated with the agonist UK-14304. The latter response was pertussis toxin sensitive. These proteins (p52) were also specifically immunoprecipitated with anti-Shc antibodies and comigrated with two Shc proteins, 46 and 52 kDa. The G beta gamma- or alpha 2-C10 AR-stimulated p52 (Shc) phosphorylation was inhibited by coexpression of the carboxyl terminus of beta-adrenergic receptor kinase (a G beta gamma-binding pleckstrin homology domain peptide) or by the tyrosine kinase inhibitors genistein and herbimycin A, but not by a dominant negative mutant of p21ras. Worthmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K) inhibited phosphorylation of p52 (Shc), implying involvement of PI3K. These results suggest that G beta gamma-stimulated Shc phosphorylation represents an early step in the pathway leading to p21ras activation, similar to the mechanism utilized by growth factor tyrosine kinase receptors.
Resumo:
Lysine is the most limiting essential amino acid in cereals, and for many years plant breeders have attempted to increase its concentration to improve the nutritional quality of these grains. The opaque2 mutation in maize doubles the lysine content in the endosperm, but the mechanism by which this occurs is unknown. We show that elongation factor 1 alpha (EF-1 alpha) is overexpressed in opaque2 endosperm compared with its normal counterpart and that there is a highly significant correlation between EF-1 alpha concentration and the total lysine content of the endosperm. This relationship is also true for two other cereals, sorghum and barley. It appears that genetic selection for genotypes with a high concentration of EF-1 alpha can significantly improve the nutritional quality of maize and other cereals.
Resumo:
Calcium-dependent homotypic cell-cell adhesion, mediated by molecules such as E-cadherin, guides the establishment of classical epithelial cell polarity and contributes to the control of migration, growth, and differentiation. These actions involve additional proteins, including alpha- and beta-catenin (or plakoglobin) and p120, as well as linkage to the cortical actin cytoskeleton. The molecular basis for these interactions and their hierarchy of interaction remain controversial. We demonstrate a direct interaction between F-actin and alpha (E)-catenin, an activity not shared by either the cytoplasmic domain of E-cadherin or beta-catenin. Sedimentation assays and direct visualization by transmission electron microscopy reveal that alpha 1(E)-catenin binds and bundles F-actin in vitro with micromolar affinity at a catenin/G-actin monomer ratio of approximately 1:7 (mol/mol). Recombinant human beta-catenin can simultaneously bind to the alpha-catenin/actin complex but does not bind actin directly. Recombinant fragments encompassing the amino-terminal 228 residues of alpha 1(E)-catenin or the carboxyl-terminal 447 residues individually bind actin in cosedimentation assays with reduced affinity compared with the full-length protein, and neither fragment bundles actin. Except for similarities to vinculin, neither region contains sequences homologous to established actin-binding proteins. Collectively these data indicate that alpha 1 (E)-catenin is a novel actin-binding and -bundling protein and support a model in which alpha 1(E)-catenin is responsible for organizing and tethering actin filaments at the zones of E-cadherin-mediated cell-cell contact.
Resumo:
Phosphorylation of G-protein-coupled receptors plays an important role in regulating their function. In this study the G-protein-coupled receptor phosphatase (GRP) capable of dephosphorylating G-protein-coupled receptor kinase-phosphorylated receptors is described. The GRP activity of bovine brain is a latent oligomeric form of protein phosphatase type 2A (PP-2A) exclusively associated with the particulate fraction. GRP activity is observed only when assayed in the presence of protamine or when phosphatase-containing fractions are subjected to freeze/thaw treatment under reducing conditions. Consistent with its identification as a member of the PP-2A family, the GRP is potently inhibited by okadaic acid but not by I-2, the specific inhibitor of protein phosphatase type 1. Solubilization of the membrane-associated GRP followed by gel filtration in the absence of detergent yields a 150-kDa peak of latent receptor phosphatase activity. Western blot analysis of this phosphatase reveals a likely subunit composition of AB alpha C. PP-2A of this subunit composition has previously been characterized as a soluble enzyme, yet negligible soluble GRP activity was observed. The subcellular distribution and substrate specificity of the GRP suggests significant differences between it and previously characterized forms of PP-2A.
Resumo:
The 5' flanking region of the human alpha-globin gene is highly G + C rich and contains multiple copies of the consensus sequence for the Sp1 binding site. We investigated the role of this G + C-rich region in augmenting alpha-globin promoter activity in the presence of the far-upstream alpha-globin enhancer, HS-40. We show that in transiently transfected erythroid cells, deletion of the alpha-globin G + C-rich 5' flanking region has no effect on alpha-globin promoter activity. However, upon stable integration into chromatin, deletion of this region causes a nearly 90% decrease in promoter activity compared with expression from an alpha-globin promoter retaining this region. These results suggest that the alpha-globin G + C-rich 5' flanking region augments alpha-globin promoter activity in a chromatin-dependent manner. We further show that this G + C-rich region is required for the activation of alpha-globin gene expression during erythroid differentiation. Finally, we show by both footprint analysis and functional assays that the ability of the G + C-rich region to increase alpha-globin promoter activity from a stably integrated alpha-globin gene is mediated by its multiple binding sites for the transcription factor Sp1.