44 resultados para Frontal cortex
Resumo:
It is clear that the initial analysis of visual motion takes place in the striate cortex, where directionally selective cells are found that respond to local motion in one direction but not in the opposite direction. Widely accepted motion models postulate as inputs to directional units two or more cells whose spatio-temporal receptive fields (RFs) are approximately 90° out of phase (quadrature) in space and in time. Simple cells in macaque striate cortex differ in their spatial phases, but evidence is lacking for the varying time delays required for two inputs to be in temporal quadrature. We examined the space-time RF structure of cells in macaque striate cortex and found two subpopulations of (nondirectional) simple cells, some that show strongly biphasic temporal responses, and others that are weakly biphasic if at all. The temporal impulse responses of these two classes of cells are very close to 90° apart, with the strongly biphasic cells having a shorter latency than the weakly biphasic cells. A principal component analysis of the spatio-temporal RFs of directionally selective simple cells shows that their RFs could be produced by a linear combination of two components; these two components correspond closely in their respective latencies and biphasic characters to those of strongly biphasic and weakly biphasic nondirectional simple cells, respectively. This finding suggests that the motion system might acquire the requisite temporal quadrature by combining inputs from these two classes of nondirectional cells (or from their respective lateral geniculate inputs, which appear to be from magno and parvo lateral geniculate cells, respectively).
Resumo:
Many prefrontal (PF) neurons convey information about both an object’s identity (what) and its location (where). To explore how they represent conjunctions of what and where, we explored the receptive fields of their mnemonic activity (i.e., their “memory fields”) by requiring monkeys to remember both an object and its location at many positions throughout a wide portion of central vision. Many PF neurons conveyed object information and had highly localized memory fields that emphasized the contralateral, but not necessarily foveal, visual field. These results indicate that PF neurons can simultaneously convey precise location and object information and thus may play a role in constructing a unified representation of a visual scene.
Resumo:
The discrepancy between the structural longitudinal organization of the parallel-fiber system in the cerebellar cortex and the functional mosaic-like organization of the cortex has provoked controversial theories about the flow of information in the cerebellum. We address this issue by characterizing the spatiotemporal organization of neuronal activity in the cerebellar cortex by using optical imaging of voltage-sensitive dyes in isolated guinea-pig cerebellum. Parallel-fiber stimulation evoked a narrow beam of activity, which propagated along the parallel fibers. Stimulation of the mossy fibers elicited a circular, nonpropagating patch of synchronized activity. These results strongly support the hypothesis that a beam of parallel fibers, activated by a focal group of granule cells, fails to activate the Purkinje cells along most of its length. It is thus the ascending axon of the granule cell, and not its parallel branches, that activates and defines the basic functional modules of the cerebellar cortex.
Resumo:
The monkey premotor cortex contains neurons that discharge during action execution and during observation of actions made by others. Transcranial magnetic stimulation experiments suggest that a similar observation/execution matching system also is present in humans. We recorded neuromagnetic oscillatory activity of the human precentral cortex from 10 healthy volunteers while (i) they had no task to perform, (ii) they were manipulating a small object, and (iii) they were observing another individual performing the same task. The left and right median nerves were stimulated alternately (interstimulus interval, 1.5 s) at intensities exceeding motor threshold, and the poststimulus rebound of the rolandic 15- to 25-Hz activity was quantified. In agreement with previous studies, the rebound was strongly suppressed bilaterally during object manipulation. Most interestingly, the rebound also was significantly diminished during action observation (31–46% of the suppression during object manipulation). Control experiments, in which subjects were instructed to observe stationary or moving stimuli, confirmed the specificity of the suppression effect. Because the recorded 15- to 25-Hz activity is known to originate mainly in the precentral motor cortex, we concluded that the human primary motor cortex is activated during observation as well as execution of motor tasks. These findings have implications for a better understanding of the machinery underlying action recognition in humans.
Resumo:
The relative abundance of alternatively spliced long (γ2L) and short (γ2S) mRNAs of the γ2 subunit of the γ-amino butyrate type A (GABAA) receptor was examined in dorsolateral prefrontal cortex of schizophrenics and matched controls by using in situ hybridization histochemistry and semiquantitative reverse transcription–PCR (RT-PCR) amplification. A cRNA probe identifying both mRNAs showed that the transcripts are normally expressed at moderately high levels in the prefrontal cortex. Consistent with previous studies, overall levels of γ2 transcripts in prefrontal cortex of brains from schizophrenics were reduced by 28.0%, although this reduction did not reach statistical significance. RT-PCR, performed under nonsaturating conditions on total RNA from the same blocks of tissue used for in situ hybridization histochemistry, revealed a marked reduction in the relative proportion of γ2S transcripts in schizophrenic brains compared with controls. In schizophrenics, γ2S transcripts had fallen to 51.7% (±7.9% SE; P < 0.0001) relative to control levels. Levels of γ2L transcripts showed only a small and nonsignificant reduction of 16.9% (±12.0% SE, P > 0.05). These findings indicate differential transcriptional regulation of two functionally distinct isoforms of one of the major GABAA receptor subunits in the prefrontal cortex of schizophrenics. The specific reduction in relative abundance of γ2S mRNAs and the associated relative increase in γ2L mRNAs should result in functionally less active GABAA receptors and have severe consequences for cortical integrative function.
Resumo:
We optically imaged a visual masking illusion in primary visual cortex (area V-1) of rhesus monkeys to ask whether activity in the early visual system more closely reflects the physical stimulus or the generated percept. Visual illusions can be a powerful way to address this question because they have the benefit of dissociating the stimulus from perception. We used an illusion in which a flickering target (a bar oriented in visual space) is rendered invisible by two counter-phase flickering bars, called masks, which flank and abut the target. The target and masks, when shown separately, each generated correlated activity on the surface of the cortex. During the illusory condition, however, optical signals generated in the cortex by the target disappeared although the image of the masks persisted. The optical image thus was correlated with perception but not with the physical stimulus.
Resumo:
Production of prostaglandins involved in renal salt and water homeostasis is modulated by regulated expression of the inducible form of cyclooxygenase-2 (COX-2) at restricted sites in the rat renal cortex. Because inflammatory COX-2 is suppressed by glucocorticoids, and prostaglandin levels in the kidney are sensitive to steroids, the sensitivity of COX expression to adrenalectomy (ADX) was investigated. By 2 weeks after ADX in mature rats, cortical COX-2 immunoreactivity increased 10-fold in the cortical thick ascending limb and macula densa. The constitutive isoform, COX-1, was unchanged. The magnitude of the changes and specificity of COX-2 immunoreactivity were validated by in situ hybridization histochemistry of COX-2 mRNA and Western blot analysis. Increased COX-2 activity (>5-fold) was documented by using a specific COX-2 inhibitor. The COX-2 up-regulation in ADX rats was reversed by replacement therapy with either corticosterone or deoxycorticosterone acetate. In normal rats, inhibition of glucocorticoid receptors with RU486 or mineralocorticoid receptors with spironolactone caused up-regulation of renal cortical COX-2. These results indicate that COX-2 expression in situ is tonically inhibited by adrenal steroids, and COX-2 is regulated by mineralocorticoids as well as glucocorticoids.
Resumo:
Stimulus recognition in monkeys is severely impaired by destruction or dysfunction of the perirhinal cortex and also by systemic administration of the cholinergic-muscarinic receptor blocker, scopolamine. These two effects are shown here to be linked: Stimulus recognition was found to be significantly impaired after bilateral microinjection of scopolamine directly into the perirhinal cortex, but not after equivalent injections into the laterally adjacent visual area TE or into the dentate gyrus of the overlying hippocampal formation. The results suggest that the formation of stimulus memories depends critically on cholinergic-muscarinic activation of the perirhinal area, providing a new clue to how stimulus representations are stored.
Resumo:
In subjects suffering from early onset strabismus, signals conveyed by the two eyes are not perceived simultaneously but in alternation. We exploited this phenomenon of interocular suppression to investigate the neuronal correlate of binocular rivalry in primary visual cortex of awake strabismic cats. Monocularly presented stimuli that were readily perceived by the animal evoked synchronized discharges with an oscillatory patterning in the γ-frequency range. Upon dichoptic stimulation, neurons responding to the stimulus that continued to be perceived increased the synchronicity and the regularity of their oscillatory patterning while the reverse was true for neurons responding to the stimulus that was no longer perceived. These differential changes were not associated with modifications of discharge rate, suggesting that at early stages of visual processing the degree of synchronicity rather than the amplitude of responses determines which signals are perceived and control behavioral responses.
Resumo:
The cortex of the brain is organized into clear horizontal layers, laminae, which subserve much of the connectional anatomy of the brain. We hypothesize that there is also a vertical anatomical organization that might subserve local interactions of neuronal functional units, in accord with longstanding electrophysiological observations. We develop and apply a general quantitative method, inspired by analogous methods in condensed matter physics, to examine the anatomical organization of the cortex in human brain. We find, in addition to obvious laminae, anatomical evidence for tightly packed microcolumnar ensembles containing approximately 11 neurons, with a periodicity of about 80 μm. We examine the structural integrity of this new architectural feature in two common dementing illnesses, Alzheimer disease and dementia with Lewy bodies. In Alzheimer disease, there is a dramatic, nearly complete loss of microcolumnar ensemble organization. The relative degree of loss of microcolumnar ensembles is directly proportional to the number of neurofibrillary tangles, but not related to the amount of amyloid-β deposition. In dementia with Lewy bodies, a similar disruption of microcolumnar ensemble architecture occurs despite minimal neuronal loss. These observations show that quantitative analysis of complex cortical architecture can be applied to analyze the anatomical basis of brain disorders.
Resumo:
Childhood exposure to low-level lead can permanently reduce intelligence, but the neurobiologic mechanism for this effect is unknown. We examined the impact of lead exposure on the development of cortical columns, using the rodent barrel field as a model. In all areas of mammalian neocortex, cortical columns constitute a fundamental structural unit subserving information processing. Barrel field cortex contains columnar processing units with distinct clusters of layer IV neurons that receive sensory input from individual whiskers. In this study, rat pups were exposed to 0, 0.2, 1, 1.5, or 2 g/liter lead acetate in their dam's drinking water from birth through postnatal day 10. This treatment, which coincides with the development of segregated columns in the barrel field, produced blood lead concentrations from 1 to 31 μg/dl. On postnatal day 10, the area of the barrel field and of individual barrels was measured. A dose-related reduction in barrel field area was observed (Pearson correlation = −0.740; P < 0.001); mean barrel field area in the highest exposure group was decreased 12% versus controls. Individual barrels in the physiologically more active caudoventral group were affected preferentially. Total cortical area measured in the same sections was not altered significantly by lead exposure. These data support the hypothesis that lead exposure may impair the development of columnar processing units in immature neocortex. We demonstrate that low levels of blood lead, in the range seen in many impoverished inner-city children, cause structural alterations in a neocortical somatosensory map.
Resumo:
Revealing the layout of cortical maps is important both for understanding the processes involved in their development and for uncovering the mechanisms underlying neural computation. The typical organization of orientation maps in the cat visual cortex is radial; complete orientation cycles are mapped around orientation singularities. In contrast, long linear zones of orientation representation have been detected in the primary visual cortex of the tree shrew. In this study, we searched for the existence of long linear sequences and wide linear zones within orientation preference maps of the cat visual cortex. Optical imaging based on intrinsic signals was used. Long linear sequences and wide linear zones of preferred orientation were occasionally detected along the border between areas 17 and 18, as well as within area 18. Adjacent zones of distinct radial and linear organizations were observed across area 18 of a single hemisphere. However, radial and linear organizations were not necessarily segregated; long (7.5 mm) linear sequences of preferred orientation were found embedded within a typical pinwheel-like organization of orientation. We conclude that, although the radial organization is dominant, perfectly linear organization may develop and perform the processing related to orientation in the cat visual cortex.
Resumo:
Neocortex, a new and rapidly evolving brain structure in mammals, has a similar layered architecture in species over a wide range of brain sizes. Larger brains require longer fibers to communicate between distant cortical areas; the volume of the white matter that contains long axons increases disproportionally faster than the volume of the gray matter that contains cell bodies, dendrites, and axons for local information processing, according to a power law. The theoretical analysis presented here shows how this remarkable anatomical regularity might arise naturally as a consequence of the local uniformity of the cortex and the requirement for compact arrangement of long axonal fibers. The predicted power law with an exponent of 4/3 minus a small correction for the thickness of the cortex accurately accounts for empirical data spanning several orders of magnitude in brain sizes for various mammalian species, including human and nonhuman primates.
Resumo:
Accelerating hippocampal sprouting by making unilateral progressive lesions of the entorhinal cortex spared the spatial memory of rats tested for retention of a learned alternation task. Subsequent transection of the sprouted crossed temporodentate pathway (CTD), as well as a simultaneous CTD transection and progressive entorhinal lesion, produced a persistent deficit on the memory task. These results suggest that CTD sprouting, which is homologous to the original perforant path input to the dentate gyrus of the hippocampus, is behaviorally significant and can ameliorate at least some of the memory deficits associated with hippocampal deafferentation.