51 resultados para Fragments of a discourse
Resumo:
Lipophosphoglycan (LPG) glycoconjugates from promastigotes of Leishmania were not able to induce the expression of the cytokine-inducible nitric oxide synthase (iNOS) by the murine macrophage cell line, J774. However, they synergize with interferon gamma to stimulate the macrophages to express high levels of iNOS. This synergistic effect was critically time-dependent. Preincubation of J774 cells with the LPG glycans 4-18 h before stimulation with interferon gamma resulted in a significant reduction in the expression of iNOS mRNA and of NO synthesis, compared with cells preincubated with culture medium alone. The regulatory effect on the induction of iNOS by LPG is located in the LPG phosphoglycan disaccharide backbone. Synthetic fragments of this backbone had a similar regulatory effect on NO synthesis. Further, the production of NO by activated macrophages in the present system was correlated directly with the leishmanicidal capacity of the cells. These data therefore demonstrate that LPG glycoconjugates have a profound effect on the survival of Leishmania parasites through their ability to regulate the expression of iNOS by macrophages.
Resumo:
The cis-regulatory systems that control developmental expression of two sea urchin genes have been subjected to detailed functional analysis. Both systems are modular in organization: specific, separable fragments of the cis-regulatory DNA each containing multiple transcription factor target sites execute particular regulatory subfunctions when associated with reporter genes and introduced into the embryo. The studies summarized here were carried out on the CyIIIa gene, expressed in the embryonic aboral ectoderm and on the Endo16 gene, expressed in the embryonic vegetal plate, archenteron, and then midgut. The regulatory systems of both genes include modules that control particular aspects of temporal and spatial expression, and in both the territorial boundaries of expression depend on a combination of negative and positive functions. In both genes different regulatory modules control early and late embryonic expression. Modular cis-regulatory organization is widespread in developmentally regulated genes, and we present a tabular summary that includes many examples from mouse and Drosophila. We regard cis-regulatory modules as units of developmental transcription control, and also of evolution, in the assembly of transcription control systems.
Resumo:
MRL/MP-+/+ (MRL/+) mice develop pancreatitis and sialoadenitis after they reach 7 months of age. Conventional bone marrow transplantation has been found to be ineffective in the treatment of these forms of apparent autoimmune disease. Old MRL/+ mice show a dramatic thymic involution with age. Hematolymphoid reconstitution is incomplete when fetal liver cells (as a source of hemopoietic stem cells) plus fetal bone (FB; which is used to recruit stromal cells) are transplanted from immunologically normal C57BL/6 donor mice to MRL/+ female recipients. Embryonic thymus from allogeneic C57BL/6 donors was therefore engrafted along with either bone marrow or fetal hematopoietic cells (FHCs) plus fragments of adult or fetal bone. More than seventy percent of old MRL/+ mice (> 7 months) that had been given a fetal thymus (FT) transplant plus either bone marrow or FHCs and also bone fragments survived more than 100 days after treatment. The mice that received FHCs, FB, plus FT from allogeneic donors developed normal T cell and B cell functions. Serum amylase levels decreased in these mice whereas they increased in the mice that received FHCs and FB but not FT. The pancreatitis and sialoadenitis already present at the time of transplantations were fully corrected according to histological analysis by transplants of allogeneic FHCs, FB and FT in the MRL/+ mice. These findings are taken as an experimental indication that perhaps stem cell transplants along with FT grafts might represent a useful strategy for treatment of autoimmune diseases in aged humans.
Resumo:
We have purified from hamster liver a second cysteine protease that cleaves and activates sterol regulatory element binding proteins (SREBPs). cDNA cloning revealed that this enzyme is the hamster equivalent of Mch3, a human enzyme that is related to the interleukin 1beta converting enzyme. We call this enzyme Mch3/SCA-2. It is 54% identical to hamster CPP32/SCA-1, a cysteine protease that was earlier shown to cleave SREBPs at a conserved Asp between the basic helix-loop-helix leucine zipper domain and the membrane attachment domain. This cleavage liberates an NH2-terminal fragment of approximately 460 amino acids that activates transcription of genes encoding the low density lipoprotein receptor and enzymes of cholesterol synthesis. Mch3/SCA-2 and CPP32/SCA-I are synthesized as inactive 30-35 kDa precursors that are thought to be cleaved during apoptosis to generate active fragments of approximately 20 and approximately 10 kDa. The current data lend further support to the notion that SREBPs are cleaved and activated as part of the program in programmed cell death.
Resumo:
A methodology has been developed for the study of molecular recognition at the level of single events and for the localization of sites on biosurfaces, in combining force microscopy with molecular recognition by specific ligands. For this goal, a sensor was designed by covalently linking an antibody (anti-human serum albumin, polyclonal) via a flexible spacer to the tip of a force microscope. This sensor permitted detection of single antibody-antigen recognition events by force signals of unique shape with an unbinding force of 244 +/- 22 pN. Analysis revealed that observed unbinding forces originate from the dissociation of individual Fab fragments from a human serum albumin molecule. The two Fab fragments of the antibody were found to bind independently and with equal probability. The flexible linkage provided the antibody with a 6-nm dynamical reach for binding, rendering binding probability high, 0.5 for encounter times of 60 ms. This permitted fast and reliable detection of antigenic sites during lateral scans with a positional accuracy of 1.5 nm. It is indicated that this methodology has promise for characterizing rate constants and kinetics of molecular recognition complexes and for molecular mapping of biosurfaces such as membranes.
Resumo:
Advances in screening technologies allowing the identification of growth factor receptors solely by virtue of DNA or protein sequence comparison call for novel methods to isolate corresponding ligand growth factors. The EPH-like receptor tyrosine kinase (RTK) HEK (human EPH-like kinase) was identified previously as a membrane antigen on the LK63 human pre-B-cell line and overexpression in leukemic specimens and cell lines suggested a role in oncogenesis. We developed a biosensor-based approach using the immobilized HEK receptor exodomain to detect and monitor purification of the HEK ligand. A protein purification protocol, which included HEK affinity chromatography, achieved a 1.8 X 10(6)-fold purification of an approximately 23-kDa protein from human placental conditioned medium. Analysis of specific sHEK (soluble extracellular domain of HEK) ligand interactions in the first and final purification steps suggested a ligand concentration of 40 pM in the source material and a Kd of 2-3 nM. Since the purified ligand was N-terminally blocked, we generated tryptic peptides and N-terminal amino acid sequence analysis of 7 tryptic fragments of the S-pyridylethylated protein unequivocally matched the sequence for AL-1, a recently reported ligand for the related EPH-like RTK REK7 (Winslow, J.W., Moran, P., Valverde, J., Shih, A., Yuan, J.Q., Wong, S.C., Tsai, S.P., Goddard, A., Henzel, W.J., Hefti, F., Beck, K.D., & Caras, I.W. (1995) Neuron 14, 973-981). Our findings demonstrate the application of biosensor technology in ligand purification and show that AL-1, as has been found for other ligands of the EPH-like RTK family, binds more than one receptor.
Resumo:
An entire gene encoding wheat (var. Hard Red Winter Tam 107) acetyl-CoA carboxylase [ACCase; acetyl-CoA:carbon-dioxide ligase (ADP-forming), EC 6.4.1.2] has been cloned and sequenced. Comparison of the 12-kb genomic sequence with the 7.4-kb cDNA sequence reported previously revealed 29 introns. Within the coding region, the exon sequence is 98% identical to the known wheat cDNA sequence. A second ACCase gene was identified by sequencing fragments of genomic clones that include the first two exons and the first intron. Additional transcripts were detected by 5' and 3' RACE analysis (rapid amplification of cDNA ends). One set of transcripts had a 5' end sequence identical to the cDNA found previously and another set was identical to the gene reported here. The 3' RACE clones fall into four distinguishable sequence sets, bringing the number of ACCase sequences to six. None of these cDNA or genomic clones encodes a chloroplast targeting signal. Identification of six different sequences suggests that either the cytosolic ACCase genes are duplicated in the three chromosome sets in hexaploid wheat or that each of the six alleles of the cytosolic ACCase gene has a readily distinguishable DNA sequence.
Resumo:
Based on our previous transgenic mice results, which strongly suggested that separate cell-specific cis-acting elements of the mouse pro-alpha 1(I) collagen promoter control the activity of the gene in different type I collagen-producing cells, we attempted to delineate a short segment in this promoter that could direct high-level expression selectively in osteoblasts. By generating transgenic mice harboring various fragments of the promoter, we identified a 117-bp segment (-1656 to -1540) that is a minimal sequence able to confer high-level expression of a lacZ reporter gene selectively in osteoblasts when cloned upstream of the proximal 220-bp pro-alpha 1(I) promoter. This 220-bp promoter by itself was inactive in transgenic mice and unable to direct osteoblast-specific expression. The 117-bp enhancer segment contained two sequences that appeared to have different functions. The A sequence (-1656 to -1628) was required to obtain expression of the lacZ gene in osteoblasts, whereas the C sequence (-1575 to -1540) was essential to obtain consistent and high-level expression of the lacZ gene in osteoblasts. Gel shift assays showed that the A sequence bound a nuclear protein present only in osteoblastic cells. A mutation in the A segment that abolished the binding of this osteoblast-specific protein also abolished lacZ expression in osteoblasts of transgenic mice.
Resumo:
We have used a nonspecific protein cleaving reagent to map the interactions between subunits of the multisubunit enzyme RNA polymerase (Escherichia coli). We developed suitable conditions for using an untethered Fe-EDTA reagent, which does not bind significantly to proteins. Comparison of the cleaved fragments of the subunits from the core enzyme (alpha 2 beta beta') and the holoenzyme (core+sigma 70) shows that absence of the sigma 70 subunit is associated with the appearance of several cleavage sites on the subunits beta (within 10 residues of sequence positions 745, 764, 795, and 812) and beta' (within 10 residues of sequence positions 581, 613, and 728). A cleavage site near beta residue 604 is present in the holoenzyme but absent in the core, demonstrating that a conformational change occurs when sigma 70 binds. No differences are observed for the alpha subunit.
Resumo:
Substance P (SP) is a neuropeptide that mediates multiple physiological responses including transmission of painful stimuli and inflammation via an interaction with a receptor of known primary sequence. To identify the regions of the SP receptor, also termed the NK-1 receptor, involved in peptide recognition, we are using analogues of SP containing the photoreactive amino acid p-benzoyl-L-phenylalanine (Bpa). In the present study, we used radioiodinated Bpa8-SP to covalently label with high efficiency the rat SP receptor expressed in a transfected mammalian cell line. To identify the amino acid residue that serves as the site of covalent attachment, a membrane preparation of labeled receptor was subjected to partial enzymatic cleavage by trypsin. A major digestion product of 22 kDa was identified. Upon reduction with 2-mercaptoethanol the mass of this product decreased to 14 kDa. The 22-kDa tryptic fragment was purified in excellent yield by preparative SDS/PAGE under nonreducing conditions. Subcleavage with Staphylococcus aureus V8 protease and endoproteinase ArgC yielded fragments of 8.2 and 9.0 kDa, respectively. Upon reductive cleavage, the V8 protease fragment decreased to 3.0 kDa while the endoproteinase ArgC fragment decreased to 3.2 kDa. Taking into consideration enzyme specificity, molecular size, determination of the presence or absence of N-glycosylation sites, and recognition by antibodies to specific sequences of the SP receptor, the V8 protease fragment is Thr-173 to Glu-183, while the endoproteinase ArgC fragment is Val-178 to Arg-190. These two fragments share the common sequence Val-Val-Cys-Met-Ile-Glu (residues 178-183). The site of covalent attachment of radioiodinated Bpa8-SP is thus restricted to a residue within this overlap sequence. The data presented here also establish that the cysteine residue in this sequence Cys-180, which is positioned in the middle of the second extracellular loop, participates in a disulfide bond that links the first and second extracellular loops of the receptor.
Resumo:
The insertion of the blood retrotransposon into the untranslated region of exon 7 of the sn-glycerol-3-phosphate dehydrogenase-encoding gene (Gpdh) in Drosophila melanogaster induces a GPDH isozyme-GPDH-4-and alters the pattern of expression of the three normal isozymes-GPDH-1 to GPDH-3. The process of transcript terminus formation inside the retrotransposon insertion reduces the level of the Gpdh transcript that contains exon 8 and increases the level of the transcript that contains exons 1-7. The induced GPDH-4 isozyme is a translation product of the three transcripts that contain fragments of the blood retrotransposon. The mechanism of mutagenesis by the blood insertion is postulated to involve the pause or termination of transcription within the blood sequence, which in turn is caused by the interference of a DNA-binding protein with the RNA polymerase. Thus, we show the formation of a new functional GPDH protein by the insertion of a transposable element and discuss the evolutionary significance of this phenomenon.
Resumo:
We have examined the positive influence of human constant regions on the folding and bacterial expression of active soluble mouse immunoglobulin variable domains derived from a number of catalytic antibodies. Expression yields of eight hybridoma- and myeloma-derived chimeric Fab fragments are compared in both shake flasks and high density fermentations. In addition the usefulness of this system for the generation of in vivo expression libraries is examined by constructing and expressing combinations of heavy and light chain variable regions that were not selected as a pair during an immune response. A mutagenesis study of one of the recombinant catalytic Fab fragments reveals that single amino acid substitutions can have dramatic effects on the expression yield. This system should be generally applicable to the production of Fab fragments of catalytic and other hybridoma-derived antibodies for crystallographic and structure-function studies.
Resumo:
High-resolution physical maps of the genomes of three Rhodobacter capsulatus strains, derived from ordered cosmid libraries, were aligned. The 1.2-Mb segment of the SB1003 genome studied here is adjacent to a 1-Mb region analyzed previously [Fonstein, M., Nikolskaya, T. & Haselkorn, H. (1995) J. Bacteriol. 177, 2368-2372]. Probes derived from the ordered cosmid set of R. capsulatus SB1003 were used to link cosmids from the St. Louis and 2.3.1 strain libraries. Cosmids selected this way did not merge into a single contig but formed several unlinked groups. EcoRV restriction maps of the ordered cosmids were then constructed using lambda terminase and fused to derive fragments of the chromosomal map. In order to link these fragments, their ends were transcribed to produce secondary probes for hybridization to gridded cosmid libraries of the same strains. This linking reduced the number of subcontigs to three for the St. Louis strain and one for the 2.3.1 strain. Hybridization of the same probes back to the ordered cosmid set of SB1003 positioned the subcontigs on the high-resolution physical map of SB1003. The final alignment of the restriction maps shows numerous large and small translocations in this 1.2-Mb chromosomal region of the three Rhodobacter strains. In addition, the chromosomes of the three strains, whose fine-structure maps can now be compared over 2.2 Mb, are seen to contain regions of 15-80 kb in which restriction sites are highly polymorphic, interspersed among regions in which the positions of restriction sites are highly conserved.
Resumo:
Fragments of small interlobular bile ducts averaging 20 microns in diameter can be isolated from rat liver. These isolated bile duct units form luminal spaces that are impermeant to dextran-40 and expand in size when cultured in 10 microM forskolin for 24-48 hr. Secretion is Cl- and HCO3- dependent and is stimulated by forskolin > dibutyryl cAMP > secretion but not by dideoxyforskolin, as assessed by video imaging techniques. Secretin stimulates Cl-/HCO3- exchange activity, and intraluminal pH increases after forskolin administration. These studies establish that small polarized physiologically intact interlobular bile ducts can be isolated from rat liver. These isolated bile duct units should be useful preparations for assessing the transport properties of small bile duct segments, which are the primary site of injury in cholestatic liver disorders, known as "vanishing bile duct syndromes."
Resumo:
We have prepared a family of peptide fragments of the 64-residue chymotrypsin inhibitor 2, corresponding to its progressive elongation from the N terminus. The growing polypeptide chain has little tendency to form stable structure until it is largely synthesized, and what structures are formed are nonnative and lack, in particular, the native secondary structural elements of alpha-helix and beta-sheet. These elements then develop as sufficient tertiary interactions are made in the nearly full-length chain. The growth of structure in the small module is highly cooperative and does not result from the hierarchical accretion of substructures.