34 resultados para Fourier expansion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our previous studies have shown that stimulation of the anterior ventral third ventricular region increases atrial natriuretic peptide (ANP) release, whereas lesions of this structure, the median eminence, or removal of the neural lobe of the pituitary block ANP release induced by blood volume expansion (BVE). These results indicate that participation of the central nervous system is crucial in these responses, possibly through mediation by neurohypophysial hormones. In the present research we investigated the possible role of oxytocin, one of the two principal neurohypophysial hormones, in the mediation of ANP release. Oxytocin (1-10 nmol) injected i.p. caused significant, dose-dependent increases in urinary osmolality, natriuresis, and kaliuresis. A delayed antidiuretic effect was also observed. Plasma ANP concentrations increased nearly 4-fold (P < 0.01) 20 min after i.p. oxytocin (10 nmol), but there was no change in plasma ANP values in control rats. When oxytocin (1 or 10 nmol) was injected i.v., it also induced a dose-related increase in plasma ANP at 5 min (P < 0.001). BVE by intra-atrial injection of isotonic saline induced a rapid (5 min postinjection) increase in plasma oxytocin and ANP concentrations and a concomitant decrease in plasma arginine vasopressin concentration. Results were similar with hypertonic volume expansion, except that this induced a transient (5 min) increase in plasma arginine vasopressin. The findings are consistent with the hypothesis that baroreceptor activation of the central nervous system by BVE stimulates the release of oxytocin from the neurohypophysis. This oxytocin then circulates to the right atrium to induce release of ANP, which circulates to the kidney and induces natriuresis and diuresis, which restore body fluid volume to normal levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

B cells with a rearranged heavy-chain variable region VHa allotype-encoding VH1 gene segment predominate throughout the life of normal rabbits and appear to be the source of the majority of serum immunoglobulins, which thus bear VHa allotypes. The functional role(s) of these VH framework region (FR) allotypic structures has not been defined. We show here that B cells expressing surface immunoglobulin with VHa2 allotypic specificities are preferentially expanded and positively selected in the appendix of young rabbits. By flow cytometry, a higher proportion of a2+ B cells were progressing through the cell cycle (S/G2/M) compared to a2- B cells, most of which were in the G1/G0 phase of the cell cycle. The majority of appendix B cells in dark zones of germinal centers of normal 6-week-old rabbits were proliferating and very little apoptosis were observed. In contrast, in 6-week-old VH-mutant ali/ali rabbits, little cell proliferation and extensive apoptosis were observed. Nonetheless even in the absence of VH1, B cells with a2-like surface immunoglobulin had developed and expanded in the appendix of 11-week-old mutants. The numbers and tissue localization of B cells undergoing apoptosis then appeared similar to those found in 6-week-old normal appendix. Thus, B cells with immunoglobulin receptors lacking the VHa2 allotypic structures were less likely to undergo clonal expansion and maturation. These data suggest that "positive" selection of B lymphocytes through FR1 and FR3 VHa allotypic structures occurs during their development in the appendix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myotonic dystrophy is caused by an expansion of a CTG triplet repeat sequence in the 3' noncoding region of a protein kinase gene, yet the mechanism by which the triplet repeat expansion causes disease remains unknown. This report demonstrates that a DNase I hypersensitive site is positioned 3' of the triplet repeat in the wild-type allele in both fibroblasts and skeletal muscle cells. In three unrelated individuals with myotonic dystrophy that have large expansions of the triplet repeat, the allele with the triplet repeat expansion exhibited both overall DNase I resistance and inaccessibility of nucleases to the adjacent hypersensitive site. These results indicate that the triplet repeat expansion alters the adjacent chromatin structure, establishing a region of condensed chromatin, and suggests a molecular mechanism for myotonic dystrophy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental evidence for proton transfer via a hydrogen-bonded network in a membrane protein is presented. Bacteriorhodopsin's proton transfer mechanism on the proton uptake pathway between Asp-96 and the Schiff base in the M-to-N transition was determined. The slowdown of this transfer by removal of the proton donor in the Asp-96-->Asn mutant can be accelerated again by addition of small weak acid anions such as azide. Fourier-transform infrared experiments show in the Asp-96-->Asn mutant a transient protonation of azide bound to the protein in the M-to-N transition and, due to the addition of azide, restoration of the IR continuum band changes as seen in wild-type bR during proton pumping. The continuum band changes indicate fast proton transfer on the uptake pathway in a hydrogen-bonded network for wild-type bR and the Asp-96-->Asn mutant with azide. Since azide is able to catalyze proton transfer steps also in several kinetically defective bR mutants and in other membrane proteins, our finding might point to a general element of proton transfer mechanisms in proteins.