45 resultados para Forebrain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hearing underlies our ability to locate sound sources in the environment, our appreciation of music, and our ability to communicate. Participants in the National Academy of Sciences colloquium on Auditory Neuroscience: Development, Transduction, and Integration presented research results bearing on four key issues in auditory research. How does the complex inner ear develop? How does the cochlea transduce sounds into electrical signals? How does the brain's ability to compute the location of a sound source develop? How does the forebrain analyze complex sounds, particularly species-specific communications? This article provides an introduction to the papers stemming from the meeting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bird song, like human speech, is a learned vocal behavior that requires auditory feedback. Both as juveniles, while they learn to sing, and as adults, songbirds use auditory feedback to compare their own vocalizations with an internal model of a target song. Here we describe experiments that explore a role for the songbird anterior forebrain pathway (AFP), a basal ganglia-forebrain circuit, in evaluating song feedback and modifying vocal output. First, neural recordings in anesthetized, juvenile birds show that single AFP neurons are specialized to process the song stimuli that are compared during sensorimotor learning. AFP neurons are tuned to both the bird's own song and the tutor song, even when these stimuli are manipulated to be very different from each other. Second, behavioral experiments in adult birds demonstrate that lesions to the AFP block the deterioration of song that normally follows deafening. This observation suggests that deafening results in an instructive signal, indicating a mismatch between feedback and the internal song model, and that the AFP is involved in generating or transmitting this instructive signal. Finally, neural recordings from behaving birds reveal robust singing-related activity in the AFP. This activity is likely to originate from premotor areas and could be modulated by auditory feedback of the bird's own voice. One possibility is that this activity represents an efference copy, predicting the sensory consequences of motor commands. Overall, these studies illustrate that sensory and motor processes are highly interrelated in this circuit devoted to vocal learning, as is true for brain areas involved in speech.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Auditory cortical receptive field plasticity produced during behavioral learning may be considered to constitute "physiological memory" because it has major characteristics of behavioral memory: associativity, specificity, rapid acquisition, and long-term retention. To investigate basal forebrain mechanisms in receptive field plasticity, we paired a tone with stimulation of the nucleus basalis, the main subcortical source of cortical acetylcholine, in the adult guinea pig. Nucleus basalis stimulation produced electroencephalogram desynchronization that was blocked by systemic and cortical atropine. Paired tone/nucleus basalis stimulation, but not unpaired stimulation, induced receptive field plasticity similar to that produced by behavioral learning. Thus paired activation of the nucleus basalis is sufficient to induce receptive field plasticity, possibly via cholinergic actions in the cortex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 6-hr continuous infusion of 2-[p-(2-carboxyethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenos ine (CGS21680), a selective A2a-adenosine agonist, into the subarachnoid space underlying the ventral surface region of the rostral basal forebrain, which has been defined as the prostaglandin (PG) D2-sensitive sleep-promoting zone, at rates of 0.02, 0.2, 2.0, and 12 pmol/min increased slow-wave sleep (SWS) and paradoxical sleep (PS) in a dose-dependent manner up to 183% and 202% of their respective baseline levels. The increments produced by the infusion of CGS21680 at 0.2 and 2.0 pmol/min were totally diminished when the rats had been pretreated with an i.p. injection of (E)-1,3-dipropyl-7-methyl-8-(3,4-dimethoxystyryl)xanthine (KF17837; 30 mg/kg of body weight), a selective A2-adenosine antagonist. In contrast, the infusion of N6-cyclohexyladenosine (CHA), a selective A1-adenosine agonist, at 2 pmol/min significantly suppressed SWS before causing an increase in SWS, and a decrease in PS was also markedly visible. Essentially the same effects of CGS21680 and CHA were observed when these compounds were administered to the parenchymal region of the rostral basal forebrain through chronically implanted microdialysis probes. Thus, we clearly showed that stimulation of A2a-adenosine receptors in the rostral basal forebrain promotes SWS and PS. Furthermore, i.p. injections of KF17837 at 30 and 100 mg/kg of body weight dose-dependently attenuated the magnitude of the SWS increase produced by the infusion of PGD2 into the subarachnoid space of the sleep-promoting zone, thus indicating that the A2a-adenosine receptors are crucial in the sleep-promoting process triggered by PGD2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nerve growth factor (NGF) is well characterized for its neurotrophic actions on peripheral sensory and sympathetic neurons and on central cholinergic neurons of the basal forebrain. Recent evidence, however, has shown high levels of NGF to be present in a variety of biological fluids after inflammatory and autoimmune responses, suggesting that NGF is a mediator of immune interactions. Increased NGF serum levels have been reported in both humans and experimental animal models of psychological and physical stress, thus implicating NGF in neuroendocrine interactions as well. The possible source(s) and the regulatory mechanisms involved in the control of serum NGF levels, however, still remain to be elucidated. We now report the presence of both NGF gene transcripts and protein in the anterior pituitary. Immunofluorescence analysis indicated that hypophysial NGF is selectively localized in mammotroph cells and stored in secretory granules. NGF is cosecreted with prolactin from mammotroph cells by a neurotransmitter-dependent mechanism that can be pharmacologically regulated. Activation of the dopamine D2 receptor subtype, which physiologically controls prolactin release, resulted in a complete inhibition of vasoactive intestinal peptide-stimulated NGF secretion in vitro, whereas the specific D2 antagonist (-)-sulpiride stimulated NGF secretion in vivo, suggesting that the anterior pituitary is a possible source of circulating NGF. Given the increased NGF serum levels in stressful conditions and the newly recognized immunoregulatory function of this protein, NGF, together with prolactin, may thus be envisaged as an immunological alerting signal under neuronal control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunohistochemical visualization of the rat vesicular acetylcholine transporter (VAChT) in cholinergic neurons and nerve terminals has been compared to that for choline acetyltransferase (ChAT), heretofore the most specific marker for cholinergic neurons. VAChT-positive cell bodies were visualized in cerebral cortex, basal forebrain, medial habenula, striatum, brain stem, and spinal cord by using a polyclonal anti-VAChT antiserum. VAChT-immuno-reactive fibers and terminals were also visualized in these regions and in hippocampus, at neuromuscular junctions within skeletal muscle, and in sympathetic and parasympathetic autonomic ganglia and target tissues. Cholinergic nerve terminals contain more VAChT than ChAT immunoreactivity after routine fixation, consistent with a concentration of VAChT within terminal neuronal arborizations in which secretory vesicles are clustered. These include VAChT-positive terminals of the median eminence or the hypothalamus, not observed with ChAT antiserum after routine fixation. Subcellular localization of VAChT in specific organelles in neuronal cells was examined by immunoelectron microscopy in a rat neuronal cell line (PC 12-c4) expressing VAChT as well as the endocrine and neuronal forms of the vesicular monoamine transporters (VMAT1 and VMAT2). VAChT is targeted to small synaptic vesicles, while VMAT1 is found mainly but not exclusively on large dense-core vesicles. VMAT2 is found on large dense-core vesicles but not on the small synaptic vesicles that contain VAChT in PC12-c4 cells, despite the presence of VMAT2 immunoreactivity in central and peripheral nerve terminals known to contain monoamines in small synaptic vesicles. Thus, VAChT and VMAT2 may be specific markers for "cholinergic" and "adrenergic" small synaptic vesicles, with the latter not expressed in nonstimulated neuronally differentiated PC12-c4 cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Postnatal development and adult function of the central nervous system are dependent on the capacity of neurons to effect long-term changes of specific properties in response to neural activity. This neuronal response has been demonstrated to be tightly correlated with the expression of a set of regulatory genes which include transcription factors as well as molecules that can directly modify cellular signaling. It is hypothesized that these proteins play a role in activity-dependent response. Previously, we described the expression and regulation in brain of an inducible form of prostaglandin synthase/cyclooxygenase, termed COX-2. COX-2 is a rate-limiting enzyme in prostanoid synthesis and its expression is rapidly regulated in developing and adult forebrain by physiological synaptic activity. Here we demonstrate that COX-2 immunoreactivity is selectively expressed in a subpopulation of excitatory neurons in neo-and allocortices, hippocampus, and amygdala and is compartmentalized to dendritic arborizations. Moreover, COX-2 immunoreactivity is present in dendritic spines, which are specialized structures involved in synaptic signaling. The developmental profile of COX-2 expression in dendrites follows well known histogenetic gradients and coincides with the critical period for activity-dependent synaptic remodeling. These results suggest that COX-2, and its diffusible prostanoid products, may play a role in postsynaptic signaling of excitatory neurons in cortex and associated structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Auditory responses in the caudomedial neostriatum (NCM) of the zebra finch (Taeniopygia guttata) forebrain habituate to repeated presentations of a novel conspecific song. This habituation is long lasting and specific to individual stimuli. We here test the acoustic and ethological basis of this stimulus-specific habituation by recording extracellular multiunit activity in the NCM of awake male and female zebra finches presented with a variety of conspecific and heterospecific vocalizations, white noise, and tones. Initial responses to conspecific song and calls and to human speech were higher than responses to the other stimuli. Immediate habituation rates were high for all novel stimuli except tones, which habituated at a lower rate. Habituation to conspecific calls and songs outlasted habituation to other stimuli. The extent of immediate habituation induced by a particular novel song was not diminished when other conspecific songs were presented in alternation. In addition, the persistence of habituation was not diminished by exposure to other songs before testing, nor was it influenced by gender or laterality. Our results suggest that the NCM is specialized for remembering the calls and songs of many individual conspecifics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have been studying the role and mechanism of estrogen action in the survival and differentiation of neurons in the basal forebrain and its targets in the cerebral cortex, hippocampus, and olfactory bulb. Previous work has shown that estrogen-target neurons in these regions widely coexpress the mRNAs for the neurotrophin ligands and their receptors, suggesting a potential substrate for estrogen-neurotrophin interactions. Subsequent work indicated that estrogen regulates the expression of two neurotrophin receptor mRNAs in prototypic peripheral neural targets of nerve growth factor. We report herein that the gene encoding the neurotophin brain-derived neurotrophic factor (BDNF) contains a sequence similar to the canonical estrogen response element found in estrogen-target genes. Gel shift and DNA footprinting assays indicate that estrogen receptor-ligand complexes bind to this sequence in the BDNF gene. In vivo, BDNF mRNA was rapidly up-regulated in the cerebral cortex and the olfactory bulb of ovariectomized animals exposed to estrogen. These data suggest that estrogen may regulate BDNF transcription, supporting our hypothesis that estrogen may be in a position to influence neurotrophin-mediated cell functioning, by increasing the availability of specific neurotrophins in forebrain neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kindling, an animal model of epilepsy wherein seizures are induced by subcortical electrical stimulation, results in the upregulation of neurotrophin mRNA and protein in the adult rat forebrain and causes mossy fiber sprouting in the hippocampus. Intraventricular infusion of a synthetic peptide mimic of a nerve growth factor domain that interferes with the binding of neurotrophins to their receptors resulted in significant retardation of kindling and inhibition of mossy fiber sprouting. These findings suggest a critical role for neurotrophins in both kindling and kindling-induced synaptic reorganization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compensatory ventilatory responses to increased inspiratory loading are essential for adequate breathing regulation in a number of pulmonary diseases; however, the human brain sites mediating such responses are unknown. Midsagittal and axial images were acquired in 11 healthy volunteers during unloaded and loaded (30 cmH2O; 1 cmH2O = 98 Pa) inspiratory breathing, by using functional magnetic resonance imaging (fMRI) strategies (1.5-tesla MR; repetition time, 72 msec; echo time, 45 msec; flip angle, 30 degrees; field of view, 26 cm; slice thickness, 5 mm; number of excitations, 1; matrix, 128 x 256). Digital image subtractions and region of interest analyses revealed significantly increased fMRI signal intensity in discrete areas of the ventral and dorsal pons, interpeduncular nucleus, basal forebrain, putamen, and cerebellar regions. Upon load withdrawal, certain regions displayed a rapid fMRI signal off-transient, while in others, a slower fMRI signal decay emerged. Sustained loading elicited slow decreases in fMRI signal across activated regions, while second application of an identical load resulted in smaller signal increases compared to initial signal responses (P < 0.001). A moderate inspiratory load is associated with consistent regional activation of discrete brain locations; certain of these regions have been implicated in mediation of loaded breathing in animal models. We speculate that temporal changes in fMRI signal may indicate respiratory after-discharge and/or habituation phenomena.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antisera were raised against a synthetic peptide corresponding to the carboxyl terminus of the kappa-opioid receptor (KOR1). Specificity of the antisera was verified by staining of COS-7 cells transfected with KOR1 and epitope-tagged KOR1 cDNAs, by recognition by the antisera of proteins on Western blots of both transfected cells and brain tissue, by the absence of staining of both brain tissue and transfected cells after preabsorption of the antisera with the cognate peptide, and on the strong correlation between the distribution of KOR1 immunoreactivity and that of earlier ligand binding and in situ hybridization studies. Results indicate that KOR1 in neurons is targeted into both the axonal and somatodendritic compartments, but the majority of immunostaining was seen in the somatodendritic compartment. In sections from rat and guinea pig brain, prominent KOR1 staining was seen in the ventral forebrain, hypothalamus, thalamus, posterior pituitary, and midbrain. While the staining pattern was similar in both species, distinct differences were also observed. The distribution of preprodynorphin and KOR1 immunoreactivity was complementary in many brain regions, suggesting that KOR1 is poised to mediate the physiological actions of dynorphin. However, the distribution of KOR1 and enkephalin immunoreactivity was complementary in some regions as well. These results suggest that the KOR1 protein is primarily, but not exclusively, deployed to postsynaptic membranes where it mediates the effects of products of preprodynorphin and possibly preproenkephalin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The song system of birds consists of several neural pathways. One of these, the anterior forebrain pathway, is necessary for the acquisition but not for the production of learned song in zebra finches. It has been shown that the anterior forebrain pathway sequentially connects the following nuclei: the high vocal center, area X of lobus parolfactorius, the medial portion of the dorsolateral thalamic nucleus, the lateral magnocellular nucleus of anterior neostriatum (IMAN), and the robust nucleus of the archistriatum (RA). We now show in zebra finches (Taeniopygia guttata) that IMAN cells that project to RA also project to area X, forming a feedback loop within the anterior forebrain pathway. The axonal endings of the IMAN projection into area X form cohesive and distinct domains. Small injections of tracer in subregions of area X backfill a spatially restricted subset of cells in IMAN, that, in turn, send projections to RA that are arranged in horizontal layers, which may correspond to the functional representation of vocal tract muscles demonstrated by others. We infer from our data that there is a myotopic representation throughout the anterior forebrain pathway. In addition, we suggest that the parcellation of area X into smaller domains by the projection from IMAN highlights a functional architecture within X, which might correspond to units of motor control, to the representation of acoustic features of song, or both.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Voltage- and ligand-activated channels in embryonic neurons containing luteinizing hormone-releasing hormone (LHRH) were studied by patch-pipette, whole-cell current and voltage clamp techniques. LHRH neurons were maintained in explant cultures derived from olfactory pit regions of embryonic mice. Cells were marked intracellularly with Lucifer yellow following recording. Sixty-two cells were unequivocally identified as LHRH neurons by Lucifer yellow and LHRH immunocytochemistry. The cultured LHRH neurons had resting potentials around -50 mV, exhibited spontaneous discharges generated by intrinsic and/or synaptic activities and contained a time-dependent inward rectifier (Iir). Voltage clamp analysis of ionic currents in the LHRH neuron soma revealed a tetrodotoxin-sensitive Na+ current (INa) and two major types of K+ currents, a transient current (IA), a delayed rectifier current (IK) and low- and high-voltage-activated Ca2+ currents. Spontaneous depolarizing synaptic potentials and depolarizations induced by direct application of gamma-aminobutyrate were both inhibited by picrotoxin or bicuculline, demonstrating the presence of functional gamma-aminobutyrate type A synapses on these neurons. Responses to glutamate were found in LHRH neurons in older cultures. Thus, embryonic LHRH neurons not yet positioned in their postnatal environment in the forebrain contained a highly differentiated repertoire of voltage- and ligand-gated channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetylcholine, one of the main neurotransmitters in the nervous system, is synthesized by the enzyme choline acetyltransferase (ChAT; acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6). The molecular mechanisms controlling the establishment, maintenance, and plasticity of the cholinergic phenotype in vivo are largely unknown. A previous report showed that a 3800-bp, but not a 1450-bp, 5' flanking segment from the rat ChAT gene promoter directed cell type-specific expression of a reporter gene in cholinergic cells in vitro. Now we have characterized a distal regulatory region of the ChAT gene that confers cholinergic specificity on a heterologous downstream promoter in a cholinergic cell line and in transgenic mice. A 2342-bp segment from the 5' flanking region of the ChAT gene behaved as an enhancer in cholinergic cells but as a repressor in noncholinergic cells in an orientation-independent manner. Combined with a heterologous basal promoter, this fragment targeted transgene expression to several cholinergic regions of the central nervous system of transgenic mice, including basal forebrain, cortex, pons, and spinal cord. In eight independent transgenic lines, the pattern of transgene expression paralleled qualitatively and quantitatively that displayed by endogenous ChAT mRNA in various regions of the rat central nervous system. In the lumbar enlargement of the spinal cord, 85-90% of the transgene expression was targeted to the ventral part of the cord, where cholinergic alpha-motor neurons are located. Transgene expression in the spinal cord was developmentally regulated and responded to nerve injury in a similar way as the endogenous ChAT gene, indicating that the 2342-bp regulatory sequence contains elements controlling the plasticity of the cholinergic phenotype in developing and injured neurons.