32 resultados para Feedback Control Loop
Resumo:
The enzyme collagenase (EC 3.4.24.7), a key mediator in biological remodeling, can be induced in early-passage fibroblasts by a wide variety of agents and conditions. In contrast, at least some primary tissue fibroblasts are incompetent to synthesize collagenase in response to many of these stimulators. In this study, we investigate mechanisms controlling response to two of the conditions in question: (i) trypsin or cytochalasin B, which disrupt actin stress fibers, or (ii) phorbol 12-myristate 13-acetate (PMA), which activates growth factor signaling pathways. We demonstrate that collagenase expression stimulated by trypsin or cytochalasin B is regulated entirely through an autocrine cytokine, interleukin 1 alpha (IL-1 alpha). The IL-1 alpha intermediate also constitutes the major mechanism by which PMA stimulates collagenase expression, although a second signaling pathway(s) contributes to a minor extent. Elevation of the IL-1 alpha level in response to stimulators is found to be sustained by means of an autocrine feedback loop in early-passage fibroblast cultures. In contrast, fibroblasts freshly isolated from the tissue are incompetent to activate and sustain the IL-1 alpha feedback loop, even though they synthesize collagenase in response to exogenous IL-1. We conclude that this is the reason why tissue fibroblasts are limited, in comparison with subcultured fibroblasts, in their capacity to synthesize collagenase. Activation of the IL-1 alpha feedback loop, therefore, seems likely to be an important mechanism by which resident tissue cells adopt the remodeling phenotype.
Resumo:
Pulmonary neuroendocrine cells are localized predominantly at airway branchpoints. Previous work showed that gastrin-releasing peptide (GRP), a major pulmonary bombesin-like peptide, occurred in neuroendocrine cells exclusively in branching human fetal airways. We now demonstrate that GRP and GRP receptor genes are expressed in fetal mouse lung as early as embryonic day 12 (E12), when lung buds are beginning to branch. By in situ hybridization, GRP receptor transcripts were at highest levels in mesenchymal cells at cleft regions of branching airways and blood vessels. To explore the possibility that bombesin-like peptides might play a role in branching morphogenesis, E12 lung buds were cultured for 48 hr in serum-free medium. In the presence of 0.10-10 microM bombesin, branching was significantly augmented as compared with control cultures, with a peak of 94% above control values at 1 microM (P < 0.005). The bombesin receptor antagonist [Leu13- psi(CH2NH)Leu14]bombesin alone (100 nM) had no effect on baseline branching but completely abolished bombesin-induced branching. A bombesin-related peptide, [Leu8]phyllolitorin also increased branching (65% above control values at 10 nM, P < 0.005). [Leu8]Phyllolitorin also significantly augmented thymidine incorporation in cultured lung buds. Fibronectin, which is abundant at branchpoints, induces GRP gene expression in undifferentiated cell lines. These observations suggest that BLPs secreted by pulmonary neuroendocrine cells may contribute to lung branching morphogenesis. Furthermore, components of branchpoints may induce pulmonary neuroendocrine cell differentiation as part of a positive feedback loop, which could account in part for the high prevalence of these cells at branchpoints.