52 resultados para Extracellular digestion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Species of pathogenic microbes are composed of an array of evolutionarily distinct chromosomal genotypes characterized by diversity in gene content and sequence (allelic variation). The occurrence of substantial genetic diversity has hindered progress in developing a comprehensive understanding of the molecular basis of virulence and new therapeutics such as vaccines. To provide new information that bears on these issues, 11 genes encoding extracellular proteins in the human bacterial pathogen group A Streptococcus identified by analysis of four genomes were studied. Eight of the 11 genes encode proteins with a LPXTG(L) motif that covalently links Gram-positive virulence factors to the bacterial cell surface. Sequence analysis of the 11 genes in 37 geographically and phylogenetically diverse group A Streptococcus strains cultured from patients with different infection types found that recent horizontal gene transfer has contributed substantially to chromosomal diversity. Regions of the inferred proteins likely to interact with the host were identified by molecular population genetic analysis, and Western immunoblot analysis with sera from infected patients confirmed that they were antigenic. Real-time reverse transcriptase–PCR (TaqMan) assays found that transcription of six of the 11 genes was substantially up-regulated in the stationary phase. In addition, transcription of many genes was influenced by the covR and mga trans-acting gene regulatory loci. Multilocus investigation of putative virulence genes by the integrated approach described herein provides an important strategy to aid microbial pathogenesis research and rapidly identify new targets for therapeutics research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Achnanthes longipes is a marine, biofouling diatom that adheres to surfaces via adhesive polymers extruded during motility or organized into structures called stalks that contain three distinct regions: the pad, shaft, and collar. Four monoclonal antibodies (AL.C1–AL.C4) and antibodies from two uncloned hybridomas (AL.E1 and AL.E2) were raised against the extracellular adhesives of A. longipes. Antibodies were screened against a hot-water-insoluble/hot-bicarbonate-soluble-fraction. The hot-water-insoluble/hot-bicarbonate-soluble fraction was fractionated to yield polymers in three size ranges: F1, ≥ 20,000,000 Mr; F2, ≅100,000 Mr; and F3, <10,000 Mr relative to dextran standards. The ≅100,000-Mr fraction consisted of highly sulfated (approximately 11%) fucoglucuronogalactans (FGGs) and low-sulfate (approximately 2%) FGGs, whereas F1 was composed of O-linked FGG (F2)-polypeptide (F3) complexes. AL.C1, AL.C2, AL.C4, AL.E1, and AL.E2 recognized carbohydrate complementary regions on FGGs, with antigenicity dependent on fucosyl-containing side chains. AL.C3 was unique in that it had a lower affinity for FGGs and did not label any portion of the shaft. Enzyme-linked immunosorbent assay and immunocytochemistry indicated that low-sulfate FGGs are expelled from pores surrounding the raphe terminus, creating the cylindrical outer layers of the shaft, and that highly sulfated FGGs are extruded from the raphe, forming the central core. Antibody-labeling patterns and other evidence indicated that the shaft central-core region is related to material exuded from the raphe during cell motility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Werner syndrome (WS) is a premature aging disorder where the affected individuals appear much older than their chronological age. The single gene that is defective in WS encodes a protein (WRN) that has ATPase, helicase and 3′→5′ exonuclease activities. Our laboratory has recently uncovered a physical and functional interaction between WRN and the Ku heterodimer complex that functions in double-strand break repair and V(D)J recombination. Importantly, Ku specifically stimulates the exonuclease activity of WRN. We now report that Ku enables the Werner exonuclease to digest through regions of DNA containing 8-oxoadenine and 8-oxoguanine modifications, lesions that have previously been shown to block the exonuclease activity of WRN alone. These results indicate that Ku significantly alters the exonuclease function of WRN and suggest that the two proteins function concomitantly in a DNA damage processing pathway. In support of this notion we also observed co-localization of WRN and Ku, particularly after DNA damaging treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of proton binding to the extracellular and the cytoplasmic surfaces of the purple membrane were measured by laser-induced proton pulses. Purple membranes, selectively labeled by fluorescein at Lys-129 of bacteriorhodopsin, were pulsed by protons released in the aqueous bulk from excited pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) and the reaction of protons with the indicators was measured. Kinetic analysis of the data imply that the two faces of the membrane differ in their buffer capacities and in their rates of interaction with bulk protons. The extracellular surface of the purple membrane contains one anionic proton binding site per protein molecule with pK = 5.1. This site is within a Coulomb cage radius (approximately 15 A) from Lys-129. The cytoplasmic surface of the purple membrane bears 4-5 protonable moieties (pK = 5.1) that, due to close proximity, function as a common proton binding site. The reaction of the proton with this cluster is at a very fast rate (3.10(10) M-1.s-1). The proximity between the elements is sufficiently high that even in 100 mM NaCl they still function as a cluster. Extraction of the chromophore retinal from the protein has a marked effect on the carboxylates of the cytoplasmic surface, and two to three of them assume positions that almost bar their reaction with bulk protons. The protonation dynamics determined at the surface of the purple membrane is of relevance both for the vectorial proton transport mechanism of bacteriorhodopsin and for energy coupling, not only in halobacteria, but also in complex chemiosmotic systems such as mitochondrial and thylakoid membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urea (200-400 milliosmolar) activates transcription, translation of, and trans-activation by the immediate-early gene transcription factor Egr-1 in a renal epithelial cell-specific fashion. The effect at the transcriptional level has been attributed to multiple serum response elements and their adjacent Ets motifs located within the Egr-1 promoter. Elk-1, a principal ternary complex factor and Ets domain-containing protein, is a substrate of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases. In the renal medullary mIMCD3 cell line, urea (200-400 milliosmolar) activated both ERK1 and ERK2 as determined by in-gel kinase assay and immune-complex kinase assay of epitope-tagged] ERK1 and ERK2. Importantly, urea did not affect abundance of either ERK. Urea-inducible Egr-1 transcription was a consequence of ERK activation because the ERK-specific inhibitor, PD98059, abrogated transcription from the murine Egr-1 promoter in a luciferase reported gene assay. In addition, activators of protein kinase A, including forskolin and 8-Br-cAMP, which are known to inhibit ERK-mediated events, also inhibited urea-inducible Egr-1 transcription. Furthermore, urea-inducible activation of the physiological ERK substrate and transcription factor, Elk-1, was demonstrated through transient cotransfection of a chimeric Elk-1/GAL4 expression plasmid and a GAL4-driven luciferase reporter plasmid. Taken together, these data indicate that, in mIMCD3 cells, urea activates ERKs and the ERK substrate, Elk-1, and that ERK inhibition abrogates urea-inducible Egr-1 transcription. These data are consistent with a model of urea-inducible renal medullary gene expression wherein sequential activation of ERKs and Elk-1 results in increased transcription of Egr-1 through serum response element/Ets motifs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overexpression of the Neu/ErbB-2 receptor tyrosine kinase has been implicated in the genesis of human breast cancer. Indeed, expression of either activated or wild-type neu in the mammary epithelium of transgenic mice results in the induction of mammary tumors. Previously, we have shown that many of the mammary tumors arising in transgenic mice expressing wild-type neu occur through somatic activating mutations within the neu transgene itself. Here we demonstrate that these mutations promote dimerization of the Neu receptor through the formation of disulfide bonds, resulting in its constitutive activation. To explore the role of conserved cysteine residues within the region deleted in these altered Neu proteins, we examined the transforming potential of a series of Neu receptors in which the individual cysteine residues were mutated. These analyses indicated that mutation of certain cysteine residues resulted in the oncogenic activation of Neu. The increased transforming activity displayed by the altered receptors correlated with constitutive dimerization that occurred in a disulfide bond-dependent manner. We further demonstrate that addition of 2-mercaptoethanol to the culture medium interfered with the specific transforming activity of the mutant Neu receptors. These observations suggest that oncogenic activation of Neu results from constitutive disulfide bond-dependent dimerization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The differentiation of small intestinal epithelial cells may require stimulation by microenvironmental factors in vivo. In this study, the effects of mesenchymal and luminal elements in nonmalignant epithelia] cells isolated from the human fetus were studied in vitro. Enterocytes from the human fetus were cultured and microenvironmental factors were added in stages, each stage more closely approximating the microenvironment in vivo. Four stages were examined: epithelial cells derived on plastic from intestinal culture and grown as a cell clone, the same cells grown on connective tissue support, primary epithelial explants grown on fibroblasts with a laminin base, and primary epithelial explants grown on fibroblasts and laminin with n-butyrate added to the incubation medium. The epithelial cell clone dedifferentiated when grown on plastic; however, the cells expressed cytokeratins and villin as evidence of their epithelial cell origin. Human connective tissue matrix from Engelbreth-Holm-Swarm sarcoma cells (Matrigel) modulated their phenotype: alkaline phosphatase activity increased, microvilli developed on their apical surface, and the profile of insulin-like growth factor binding proteins resembled that secreted by differentiated enterocytes. Epithelial cells taken directly from the human fetus as primary cultures and grown as explants on fibroblasts and laminin expressed greater specific enzyme activities in brush border membrane fractions than the cell clone. These activities were enhanced by the luminal molecule sodium butyrate. Thus the sequential addition of connective tissue and luminal molecules to nonmalignant epithelia] cells in vitro induces a spectrum of changes in the epithelial cell phenotype toward full differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of histone H1 binding on the cleavage of superhelical plasmids by single-strand-specific nucleases was investigated. Mapping of P1 cleavage sites in pBR322, achieved by EcoRI digestion after the original P1 attack, showed an intriguing phenomenon: preexisting susceptible sites became "protected," whereas some new sites appeared at high levels of H1. Similar results were obtained with another single-strand-specific nuclease, S1. Disappearance of cutting at preexisting sites and appearance of new sites was also observed in a derivative plasmid that contains a 36-bp stretch of alternating d(AT) sequence that is known to adopt an altered P1-sensitive conformation. On the other hand, H1 titration of a dimerized version of the d(AT)18-containing plasmid led to protection of all preexisting sites except the d(AT)18 inserts, which were still cut even at high H1 levels; in this plasmid no new sites appeared. The protection of preexisting sites is best explained by long-range effects of histone H1 binding on the superhelical torsion of the plasmid. The appearance of new sites, on the other hand, probably also involves a local effect of stabilization of specific sequences in Pl-sensitive conformation, due to direct H1 binding to such sequences. That such binding involves linker histone N- and/or C-terminal tails is indicated by the fact that titration with the globular domain of H5, while causing disappearance of preexisting sites, does not lead to the appearance of any new sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The N-methyl-D-aspartate (NMDA) subtype of ionotropic glutamate receptors is a heterooligomeric membrane protein composed of homologous subunits. Here, the contribution of the M3-M4 loop of the NR1 subunit to the binding of glutamate and the co-agonist glycine was investigated by site-directed mutagenesis. Substitution of the phenylalanine residues at positions 735 or 736 of the M3-M4 loop produced a 15- to 30-fold reduction in apparent glycine affinity without affecting the binding of glutamate and the competitive glycine antagonist 7-chlorokynurenic acid; mutation of both residues caused a >100-fold decrease in glycine affinity. These residues are found in a C-terminal region of the M3-M4 loop that shows significant sequence similarity to bacterial amino acid-binding proteins. Epitope tagging revealed both the N-terminus and the M3-M4 loop to be exposed extracellularly, whereas a C-terminal epitope was localized intracellularly. These results indicate that the M3-M4 loop is part of the ligand-binding pocket of the NR1 subunit and provide the basis for a refined model of the glycine-binding site of the NMDA receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular superoxide dismutase (EC-SOD) is a secreted Cu and Zn-containing glycoprotein. While EC-SOD from most mammals is tetrameric and has a high affinity for heparin and heparan sulfate, rat EC-SOD has a low affinity for heparin, does not bind to heparan sulfate in vivo, and is apparently dimeric. To examine the molecular basis of the deviant physical properties of rat EC-SOD, the cDNAs of the rat and mouse EC-SODs were isolated and the deduced amino acid sequences were compared with that of human EC-SOD. Comparison of the sequences offered no obvious explanation of the differences. Analysis of a series of chimeric and point mutated EC-SODs showed that the N-terminal region contributes to the oligomeric state of the EC-SODs, and that a single amino acid, a valine (human amino acid position 24), is essential for the tetramerization. This residue is replaced by an aspartate in the rat. Rat EC-SOD carrying an Asp --> Val mutation is tetrameric and has a high heparin affinity, while mouse EC-SOD with a Val --> Asp mutation is dimeric and has lost its high heparin affinity. Thus, the rat EC-SOD dimer is converted to a tetramer by the exchange of a single amino acid. Furthermore, the cooperative action of four heparin-binding domains is necessary for high heparin affinity. These results also suggest that tetrameric EC-SODs are not symmetrical tetrahedrons, but composed of two interacting dimers, further supporting an evolutionary relationship with the dimeric cytosolic Cu and Zn-containing SODs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extracellular matrix (ECM) is an intricate network composed of an array of macromolecules capable of regulating the functional responsiveness of cells. Its composition greatly varies among different types of tissue, and dysregulation of its metabolism may contribute to vascular remodeling during the pathogenesis of various diseases, including atherosclerosis. In view of their antiatherosclerotic effects, the role of Ca2+ channel blockers in the metabolism of ECM was examined. Nanomolar concentrations of the five Ca2+ channel blockers amlodipine, felodipine, manidipine, verapamil, or diltiazem significantly decreased both the constitutive and platelet-derived growth factor BB-dependent collagen deposition in the ECM formed by human vascular smooth muscle cells and fibroblasts. The drugs inhibited the expression of fibrillar collagens type I and III and of basement membrane type IV collagen. Furthermore, Ca2+ channel blockers specifically increased the proteolytic activity of the 72-kDa type IV collagenase as shown by gelatin zymography and inhibited the transcription of tissue inhibitor of metalloproteinases-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies imply that the intracellular domain of Notch1 must translocate to the nucleus for its activity. In this study, we demonstrate that a mNotch1 mutant protein that lacks its extracellular domain but retains its membrane-spanning region becomes proteolytically processed on its intracellular surface and, as a result, the activated intracellular domain (mNotchIC) is released and can move to the nucleus. Proteolytic cleavage at an intracellular site is blocked by protease inhibitors. Intracellular cleavage is not seen in cells transfected with an inactive variant, which includes the extracellular lin-Notch-glp repeats. Collectively, the studies presented here support the model that mNotch1 is proteolytically processed and the cleavage product is translocated to the nucleus for mNotch1 signal transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyclonal antibodies were prepared against synthetic peptides corresponding to four different extramembrane segments of the rat glucagon receptor. The antibodies bound specifically to native glucagon receptor as judged by immunofluorescence microscopy of cultured cells expressing a synthetic gene for the receptor. Antibodies to peptides designated PR-15 and DK-12 were directed against amino acid residues 103-117 and 126-137, respectively, of the extracellular N-terminal tail. Antibody to peptide KD-14 was directed against residues 206-219 of the first extracellular loop, and antibody to peptide ST-18, against the intracellular C-terminal tail, residues 468-485. The DK-12 and KD-14 antibodies, but not the PR-15 and ST-18 antibodies, could effectively block binding of 125I-labeled glucagon to its receptor in liver membranes. Incubation of these antibodies with rat liver membranes resulted in both a decrease in the maximal hormonal binding capacity and an apparent decrease in glucagon affinity for its receptor. These effects were abolished in the presence of excess specific peptide antigen. In addition, DK-12 and KD-14 antibodies, but not PR-15 and ST-18 antibodies, interfered with glucagon-induced adenylyl cyclase activation in rat liver membranes and behaved as functional glucagon antagonists. These results demonstrate that DK-12 and KD-14 antibodies are pharmacologically active glucagon antagonists and strongly suggest that residues 126-137 of the N-terminal tail and residues 206-219 of the first extracellular loop contain determinants of ligand binding and may comprise the primary ligand-binding site on the glucagon receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ovarian cancers have a high ability to invade the peritoneal cavity and some are stimulated by estrogens. In an attempt to understand the mode of action of estrogens on these cancer cells and to develop new markers, we have characterized estrogen-regulated proteins. This study was aimed at identifying a protein secreted by ovarian cancer cells whose level was increased by estradiol [Galtier-Dereure, F., Capony, F., Maudelonde, T. & Rochefort, H. (1992) J. Clin. Endocrinol. Metab. 75, 1497-1502]. By using microprotein sequencing, the 110-kDa protein was identified as fibulin-1, a protein of the extracellular matrix that binds to fibronectin, laminin, and nidogen. The amount of immunoprecipitated fibulin-1 secreted into the medium and present in the cell extract was increased up to 10-fold by estradiol in three estrogen-responsive ovarian cancer cell lines. By immunohistochemistry fibulin-1 was located in the stroma of several ovarian cancers and cysts. The findings highlight a potential role for fibulin-1 in the spread of ovarian cancer in the peritoneal cavity and/or in distal metastases.