35 resultados para Export tax
Resumo:
Enteropathogenic Escherichia coli (EPEC) causes a characteristic histopathology in intestinal epithelial cells called the attaching and effacing lesion. Although the histopathological lesion is well described the bacterial factors responsible for it are poorly characterized. We have identified four EPEC chromosomal genes whose predicted protein sequences are similar to components of a recently described secretory pathway (type III) responsible for exporting proteins lacking a typical signal sequence. We have designated the genes sepA, sepB, sepC, and sepD (sep, for secretion of E. coli proteins). The predicted Sep polypeptides are similar to the Lcr (low calcium response) and Ysc (yersinia secretion) proteins of Yersinia species and the Mxi (membrane expression of invasion plasmid antigens) and Spa (surface presentation of antigens) regions of Shigella flexneri. Culture supernatants of EPEC strain E2348/69 contain several polypeptides ranging in size from 110 kDa to 19 kDa. Proteins of comparable size were recognized by human convalescent serum from a volunteer experimentally infected with strain E2348/69. A sepB mutant of EPEC secreted only the 110-kDa polypeptide and was defective in the formation of attaching and effacing lesions and protein-tyrosine phosphorylation in tissue culture cells. These phenotypes were restored upon complementation with a plasmid carrying an intact sepB gene. These data suggest that the EPEC Sep proteins are components of a type III secretory apparatus necessary for the export of virulence determinants.
Resumo:
The mechanisms of export of RNA from the nucleus are poorly understood; however, several viral proteins modulate nucleocytoplasmic transport of mRNA. Among these are the adenoviral proteins E1B-55kDa and E4-34kDa. Late in infection, these proteins inhibit export of host transcripts and promote export of viral mRNA. To investigate the mechanism by which these proteins act, we have expressed them in Saccharomyces cerevisiae. Overexpression of either or both proteins has no obvious effect on cell growth. By contrast, overexpression of E1B-55kDa bearing a nuclear localization signal (NLS) dramatically inhibits cell growth. In this situation, the NLS-E1B-55kDa protein is localized to the nuclear periphery, fibrous material is seen in the nucleoplasm, and poly(A)+ RNA accumulates in the nucleus. Simultaneous overexpression of E4-34kDa bearing or lacking an NLS does not modify these effects. We discuss the mechanisms of selective mRNA transport.
Resumo:
Nuclei of digitonin-permeabilized cells that had been preloaded with a model transport substrate in a cytosol-dependent import reaction were subsequently incubated to investigate which conditions would result in export of transport substrate. We found that up to 80% of the imported substrate was exported when recombinant human Ran and GTP were present in the export reaction. Ran-mediated export was inhibited by nonhydrolyzable GTP analogs and also by wheat germ agglutinin but was unaffected by a nonhydrolyzable ATP analog. Moreover, a recombinant human Ran mutant that was deficient in its GTPase activity inhibited export. These data indicate that export of proteins from the nucleus requires Ran and GTP hydrolysis but not ATP hydrolysis. We also found that digitonin-permeabilized cells were depleted of their endogenous nuclear Ran, thus allowing detection of Ran as a limiting factor for export. In contrast, most endogenous karyopherin alpha was retained in nuclei of digitonin-permeabilized cells. Unexpectedly, exogenously added, fluorescently labeled Ran, although it accessed the nuclear interior, was found to dock at the nuclear rim in a punctate pattern, suggesting the existence of Ran-binding sites at the nuclear pore complex.
Resumo:
Human T-cell leukemia virus type I (HTLV-I) gives rise to a neurologic disease known as HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the pathogenesis of the disease is unknown, the presence of a remarkably high frequency of Tax-specific, cytotoxic CD8 T cells may suggest a role of these cells in the development of HAM/TSP. Antigen-mediated signaling in a CD8 T-cell clone specific for the Tax(11-19) peptide of HTLV-I was studied using analog peptides substituted in their T-cell receptor contact residues defined by x-ray crystallographic data of the Tax(11-19) peptide in the groove of HLA-A2. CD8 T-cell stimulation with the wild-type peptide antigen led to activation of p56lck kinase activity, interleukin 2 secretion, cytotoxicity, and clonal expansion. A Tax analog peptide with an alanine substitution of the T-cell receptor contact residue tyrosine-15 induced T-cell-mediated cytolysis without activation of interleukin 2 secretion or proliferation. Induction of p56lck kinase activity correlated with T-cell-mediated cytotoxicity, whereas interleukin 2 secretion correlated with [3H]thymidine incorporation and proliferation. Moreover, Tax peptide analogs that activated the tyrosine kinase activity of p56lck could induce unresponsiveness to secondary stimulation with the wild-type peptide. These observations show that a single amino acid substitution in a T-cell receptor contact residue of Tax can differentially signal CD8 T cells and further demonstrate that primary activation has functional consequences for the secondary response of at least some Tax-specific CD8 T cells to HTLV-I-infected target cells.
Resumo:
The CDC47 gene was isolated by complementation of a cdc47 temperature-sensitive mutant in Saccharomyces cerevisiae and was shown to encode a predicted polypeptide, Cdc47, of 845 aa. Cdc47 belongs to the Cdc46/Mcm family of proteins, previously shown to be essential for initiation of DNA replication. Using indirect immunofluorescence microscopy and subcellular fractionation techniques, we show that Cdc47 undergoes cell cycle-regulated changes in its subcellular localization. At mitosis, Cdc47 enters the nucleus, where it remains until soon after the initiation of DNA replication, when it is rapidly exported back into the cytoplasm. Cdc47 protein levels do not vary with the cell cycle, but expression of CDC47 and nascent synthesis of Cdc47 occur late in the cell cycle, coinciding with mitosis. Together, these results show that Cdc47 is not only imported into the nucleus at the end of mitosis but is also exported back into the cytoplasm at the beginning of S phase. The observation that Cdc47 is exported from the nucleus at the beginning of S phase has important implications for how initiation of DNA replication is controlled.