83 resultados para Enzymatic Activity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Osteopontin is a phosphorylated glycoprotein secreted to the mineralizing extracellular matrix by osteoblasts during bone development. It is believed to facilitate the attachment of osteoblasts and osteoclasts to the extracellular matrix, allowing them to perform their respective functions during osteogenesis. Several other functions have been suggested for this protein, and its up-regulation is associated with various disease states related to calcification, including arterial plaque formation and the formation of kidney stones. Although expression of this gene has been demonstrated in multiple tissues, its regulation is not well understood. Our previous studies on the roles of the retinoblastoma protein (pRB) and p300/CBP in the regulation of osteoblast differentiation revealed a link between osteopontin induction and the synthesis of alkaline phosphatase. In this paper, we describe results specifically linking induction of osteopontin to the enzymatic activity of alkaline phosphatase in the medium, which results in the generation of free phosphate. This elevation of free phosphate in the medium is sufficient to signal induction of osteopontin RNA and protein. The strong and specific induction of osteopontin in direct response to increased phosphate levels provides a mechanism to explain how expression of this product is normally regulated in bone and suggests how it may become up-regulated in damaged tissue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cohesin-dockerin interaction in Clostridium thermocellum cellulosome mediates the tight binding of cellulolytic enzymes to the cellulosome-integrating protein CipA. Here, this interaction was used to study the effect of different cellulose-binding domains (CBDs) on the enzymatic activity of C. thermocellum endoglucanase CelD (1,4-β-d endoglucanase, EC3.2.1.4) toward various cellulosic substrates. The seventh cohesin domain of CipA was fused to CBDs originating from the Trichoderma reesei cellobiohydrolases I and II (CBDCBH1 and CBDCBH2) (1,4-β-d glucan-cellobiohydrolase, EC3.2.1.91), from the Cellulomonas fimi xylanase/exoglucanase Cex (CBDCex) (β-1,4-d glucanase, EC3.2.1.8), and from C. thermocellum CipA (CBDCipA). The CBD-cohesin hybrids interacted with the dockerin domain of CelD, leading to the formation of CelD-CBD complexes. Each of the CBDs increased the fraction of cellulose accessible to hydrolysis by CelD in the order CBDCBH1 < CBDCBH2 ≈ CBDCex < CBDCipA. In all cases, the extent of hydrolysis was limited by the disappearance of sites accessible to CelD. Addition of a batch of fresh cellulose after completion of the reaction resulted in a new burst of activity, proving the reversible binding of the intact complexes despite the apparent binding irreversibility of some CBDs. Furthermore, burst of activity also was observed upon adding new batches of CelD–CBD complexes that contained a CBD differing from the first one. This complementation between different CBDs suggests that the sites made available for hydrolysis by each of the CBDs are at least partially nonoverlapping. The only exception was CBDCipA, whose sites appeared to overlap all of the other sites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Angiogenesis inhibitors are a novel class of promising therapeutic agents for treating cancer and other human diseases. Fumagillin and ovalicin compose a class of structurally related natural products that potently inhibit angiogenesis by blocking endothelial cell proliferation. A synthetic analog of fumagillin, TNP-470, is currently undergoing clinical trials for treatment of a variety of cancers. A common target for fumagillin and ovalicin recently was identified as the type 2 methionine aminopeptidase (MetAP2). These natural products bind MetAP2 covalently, inhibiting its enzymatic activity. The specificity of this binding is underscored by the lack of inhibition of the closely related type 1 enzyme, MetAP1. The molecular basis of the high affinity and specificity of these inhibitors for MetAP2 has remained undiscovered. To determine the structural elements of these inhibitors and MetAP2 that are involved in this interaction, we synthesized fumagillin analogs in which each of the potentially reactive epoxide groups was removed either individually or in combination. We found that the ring epoxide in fumagillin is involved in the covalent modification of MetAP2, whereas the side chain epoxide group is dispensable. By using a fumagillin analog tagged with fluorescein, His-231 in MetAP2 was identified as the residue that is covalently modified by fumagillin. Site-directed mutagenesis of His-231 demonstrated its importance for the catalytic activity of MetAP2 and confirmed that the same residue is covalently modified by fumagillin. These results, in agreement with a recent structural study, suggest that fumagillin and ovalicin inhibit MetAP2 by irreversible blockage of the active site.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water is the natural medium for protein folding, which is also used in all in vitro studies. In the present work, we posed, and answered affirmatively, a question of whether it is possible to fold correctly a typical protein in a nonaqueous solvent. To this end, unfolded and reduced hen egg-white lysozyme was refolded and reoxidized in glycerol containing varying amounts of water. The unfolded/reduced enzyme was found to regain spontaneously substantial catalytic activity even in the nearly anhydrous solvent; for example, the refolding yield in 99% glycerol was still some one-third of that in pure water, and one-half of that was regained even in 99.8% glycerol. The less than full recovery of the enzymatic activity in glycerol is, as in water, because of competing protein aggregation during the refolding. Lysozyme reoxidation in glycerol was successfully mediated by two dissimilar oxidizing systems, and the refolding yield was markedly affected by the pH of the last aqueous solution before the transfer into glycerol. No recovery of the lysozyme activity was observed when the refolding/reoxidation reaction was carried out in the denaturing solvent dimethyl sulfoxide. This study paves the way for a systematic investigation of the solvent effect on protein folding and demonstrates that water is not a unique milieu for this process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The protein subunit of RNase P from a thermophilic bacterium, Thermotoga maritima, was overexpressed in and purified from Escherichia coli. The cloned protein was reconstituted with the RNA subunit transcribed in vitro. The temperature optimum of the holoenzyme is near 50°C, with no enzymatic activity at 65°C or above. This finding is in sharp contrast to the optimal growth temperature of T.maritima, which is near 80°C. However, in heterologous reconstitution experiments in vitro with RNase P subunits from other species, we found that the protein subunit from T.maritima was responsible for the comparative thermal stability of such complexes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estrogen induces a global change in the translation profile of Xenopus hepatocytes, replacing serum protein synthesis with production of the yolk protein precursor vitellogenin. This is accomplished by the coordinate destabilization of serum protein mRNAs and the transcriptional induction and subsequent stabilization of vitellogenin mRNA. Previous work identified an endonuclease activity whose appearance on polysomes correlated with the disappearance of serum protein mRNAs. This enzyme, polysomal ribonuclease 1 (PMR1), is a novel member of the peroxidase gene family. The current study examined the association of PMR1 with its mRNA targets on polysomes and mRNPs. The highest amount of polysome-bound PMR1 was observed prior to estrogen induction of mRNA decay. Its distribution on sucrose density gradients matched the absorbance profile of polysome-bound mRNA, suggesting that PMR1 forms a latent complex with mRNA. Following dissociation with EDTA the 62 kDa PMR1 sedimented with a larger complex of >670 kDa. Estrogen induces a 22-fold increase in unit enzymatic activity of polysome-bound PMR1, and a time-dependent loss of PMR1 from polysomes in a manner that mirrors the disappearance of albumin mRNA. These data suggest that the key step in the extensive estrogen-induced change in mRNA decay in Xenopus liver is activation of a latent mRNA endonuclease associated with its target mRNA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fabry disease is a lipid storage disorder resulting from mutations in the gene encoding the enzyme α-galactosidase A (α-gal A; EC 3.2.1.22). We previously have demonstrated long-term α-gal A enzyme correction and lipid reduction mediated by therapeutic ex vivo transduction and transplantation of hematopoietic cells in a mouse model of Fabry disease. We now report marked improvement in the efficiency of this gene-therapy approach. For this study we used a novel bicistronic retroviral vector that engineers expression of both the therapeutic α-gal A gene and the human IL-2Rα chain (huCD25) gene as a selectable marker. Coexpression of huCD25 allowed selective immunoenrichment (preselection) of a variety of transduced human and murine cells, resulting in enhanced intracellular and secreted α-gal A enzyme activities. Of particular significance for clinical applicability, mobilized CD34+ peripheral blood hematopoietic stem/progenitor cells from Fabry patients have low-background huCD25 expression and could be enriched effectively after ex vivo transduction, resulting in increased α-gal A activity. We evaluated effects of preselection in the mouse model of Fabry disease. Preselection of transduced Fabry mouse bone marrow cells elevated the level of multilineage gene-corrected hematopoietic cells in the circulation of transplanted animals and improved in vivo enzymatic activity levels in plasma and organs for more than 6 months after both primary and secondary transplantation. These studies demonstrate the potential of using a huCD25-based preselection strategy to enhance the clinical utility of ex vivo hematopoietic stem/progenitor cell gene therapy of Fabry disease and other disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

V(D)J recombination generates a remarkably diverse repertoire of antigen receptors through the rearrangement of germline DNA. Terminal deoxynucleotidyl transferase (TdT), a polymerase that adds random nucleotides (N regions) to recombination junctions, is a key enzyme contributing to this diversity. The current model is that TdT adds N regions during V(D)J recombination by random collision with the DNA ends, without a dependence on other cellular factors. We previously demonstrated, however, that V(D)J junctions from Ku80-deficient mice unexpectedly lack N regions, although the mechanism responsible for this effect remains undefined in the mouse system. One possibility is that junctions are formed in these mice during a stage in development when TdT is not expressed. Alternatively, Ku80 may be required for the expression, nuclear localization or enzymatic activity of TdT. Here we show that V(D)J junctions isolated from Ku80-deficient fibroblasts are devoid of N regions, as were junctions in Ku80-deficient mice. In these cells TdT protein is abundant at the time of recombination, localizes properly to the nucleus and is enzymatically active. Based on these data, we propose that TdT does not add to recombination junctions through random collision but is actively recruited to the V(D)J recombinase complex by Ku80.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We cloned a cDNA for a gibberellin-induced ribonuclease (RNase) expressed in barley (Hordeum vulgare) aleurone and the gene for a second barley RNase expressed in leaf tissue. The protein encoded by the cDNA is unique among RNases described to date in that it contains a novel 23-amino acid insert between the C2 and C3 conserved sequences. Expression of the recombinant protein in tobacco (Nicotiana tabacum) suspension-cultured protoplasts gave an active RNase of the expected size, confirming the enzymatic activity of the protein. Analyses of hormone regulation of expression of mRNA for the aleurone RNase revealed that, like the pattern for α-amylase, mRNA levels increased in the presence of gibberellic acid, and its antagonist abscisic acid prevented this effect. Quantitative studies at early times demonstrated that cycloheximide treatment of aleurone layers increased mRNA levels 4-fold, whereas a combination of gibberellin plus cycloheximide treatment was required to increase α-amylase mRNA levels to the same extent. These results are consistent with loss of repression as an initial effect of gibberellic acid on transcription of those genes, although the regulatory pathways for the two genes may differ.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A multisubunit form of acetyl coenzyme A (CoA) carboxylase (ACCase) from soybean (Glycine max) was characterized. The enzyme catalyzes the formation of malonyl CoA from acetyl CoA, a rate-limiting step in fatty acid biosynthesis. The four known components that constitute plastid ACCase are biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and the α- and β-subunits of carboxyltransferase (α- and β-CT). At least three different cDNAs were isolated from germinating soybean seeds that encode BC, two that encode BCCP, and four that encode α-CT. Whereas BC, BCCP, and α-CT are products of nuclear genes, the DNA that encodes soybean β-CT is located in chloroplasts. Translation products from cDNAs for BC, BCCP, and α-CT were imported into isolated pea (Pisum sativum) chloroplasts and became integrated into ACCase. Edman microsequence analysis of the subunits after import permitted the identification of the amino-terminal sequence of the mature protein after removal of the transit sequences. Antibodies specific for each of the chloroplast ACCase subunits were generated against products from the cDNAs expressed in bacteria. The antibodies permitted components of ACCase to be followed during fractionation of the chloroplast stroma. Even in the presence of 0.5 m KCl, a complex that contained BC plus BCCP emerged from Sephacryl 400 with an apparent molecular mass greater than about 800 kD. A second complex, which contained α- and β-CT, was also recovered from the column, and it had an apparent molecular mass of greater than about 600 kD. By mixing the two complexes together at appropriate ratios, ACCase enzymatic activity was restored. Even higher ACCase activities were recovered by mixing complexes from pea and soybean. The results demonstrate that the active form of ACCase can be reassembled and that it could form a high-molecular-mass complex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rck2, a yeast Ser/Thr protein kinase homologous to mammalian calmodulin kinases, requires phosphorylation for activation. We provide evidence that in budding yeast, this step can be executed by the osmostress-activated mitogen-activated protein kinase Hog1. Rck2 phosphorylation was transiently increased during osmostress or in mutants with a hyperactive high osmolarity glycerol (HOG) pathway. This modification depended on catalytically active Hog1 kinase and two putative mitogen-activated protein kinase phosphorylation sites in Rck2. Immunokinase assays showed that Hog1 can directly phosphorylate Rck2 to stimulate its enzymatic activity toward translation elongation factor 2. We demonstrate that Hog1 and Rck2 are necessary for attenuation of protein synthesis in response to osmotic challenge and show that modification of elongation factor 2 induced by osmostress depends on Rck2 and Hog1 in vivo. Therefore, we propose that the transient down-regulation of protein synthesis after osmotic shock is a response not to damage but to an extracellular signal mediated by Hog1 and Rck2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lissencephaly is a severe brain malformation in humans. To study the function of the gene mutated in lissencephaly (LIS1), we deleted the first coding exon from the mouse Lis1 gene. The deletion resulted in a shorter protein (sLIS1) that initiates from the second methionine, a unique situation because most LIS1 mutations result in a null allele. This mutation mimics a mutation described in one lissencephaly patient with a milder phenotype. Homozygotes are early lethal, although heterozygotes are viable and fertile. Most strikingly, the morphology of cortical neurons and radial glia is aberrant in the developing cortex, and the neurons migrate more slowly. This is the first demonstration, to our knowledge, of a cellular abnormality in the migrating neurons after Lis1 mutation. Moreover, cortical plate splitting and thalomocortical innervation are also abnormal. Biochemically, the mutant protein is not capable of dimerization, and enzymatic activity is elevated in the embryos, thus a demonstration of the in vivo role of LIS1 as a subunit of PAF-AH. This mutation allows us to determine a hierarchy of functions that are sensitive to LIS1 dosage, thus promoting our understanding of the role of LIS1 in the developing cortex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the 7 years since dynamin was first isolated from bovine brain in search of novel microtubule-based motors, our understanding of this enzyme has expanded significantly. We now know that brain dynamin belongs to a family of large GTPases, which mediate vesicle trafficking. Furthermore, this enzymatic activity is markedly increased through association with microtubules, acidic phospholipids, and certain regulatory proteins that contain Src homology 3 (SH3) domains. From functional, genetic, and cellular manipulations, it is now generally accepted that dynamin participates in the endocytic uptake of receptors, associated ligands, and plasma membrane following an exocytic event. These observations have confirmed at least one function of dynamin that was predicted from seminal studies on a pleiotropic mutant, shibirets (shits) in Drosophila melanogaster. Of equal interest is the finding that there are multiple dynamin gene products, including two that are expressed in a tissue-specific manner, and they share marked homology with a larger family of distinct but related proteins. Therefore, it is attractive to speculate that the different dynamins may participate in related cellular functions, such as distinct endocytic processes and even secretion. In turn, dynamin could play an important role in cell growth, cell spreading, and neurite outgrowth. The purpose of this review is to enumerate on the expansive dynamin literature and to discuss the nomenclature, expression, and putative functions of this growing and interesting family of proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein kinase C δ (PKC δ) is normally activated by diacylglycerol produced from receptor-mediated hydrolysis of inositol phospholipids. On stimulation of cells with H2O2, the enzyme is tyrosine phosphorylated, with a concomitant increase in enzymatic activity. This activation does not appear to accompany its translocation to membranes. In the present study, the tyrosine phosphorylation sites of PKC δ in the H2O2-treated cells were identified as Tyr-311, Tyr-332, and Tyr-512 by mass spectrometric analysis with the use of the precursor-scan method and by immunoblot analysis with the use of phosphorylation site-specific antibodies. Tyr-311 was the predominant modification site among them. In an in vitro study, phosphorylation at this site by Lck, a non-receptor-type tyrosine kinase, enhanced the basal enzymatic activity and elevated its maximal velocity in the presence of diacylglycerol. The mutation of Tyr-311 to phenylalanine prevented the increase in this maximal activity, but replacement of the other two tyrosine residues did not block such an effect. The results indicate that phosphorylation at Tyr-311 between the regulatory and catalytic domains is a critical step for generation of the active PKC δ in response to H2O2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Allene oxide synthase (AOS) mediates the conversion of lipoxygenase-derived fatty acid hydroperoxides to unstable allene epoxides, which supply the precursors for the synthesis of the phytohormone jasmonic acid (JA). In this study the characterization of AOS gene expression in flax (Linum usitatissimum) is reported. AOS was constitutively expressed in different organs of flax plants. Additionally, AOS gene expression was enhanced after mechanical wounding in both the directly damaged leaves and in the systemic tissue located distal to the treated leaves. This wound-induced accumulation of AOS required the de novo biosynthesis of other unknown proteins involved in the signaling pathway modulating wound-induced AOS gene expression. Furthermore, the wound-induced AOS mRNA accumulation was correlated with the increase in the levels of JA. Both JA and its precursor, 12-oxo-phytodienoic acid, activated AOS gene expression in a dose-dependent manner. Thus, JA could activate its own biosynthetic pathway in flax leaves. Moreover, neither salicylic acid (SA) nor aspirin influenced AOS enzymatic activity. It is interesting that pretreatment with SA or aspirin inhibited wound-induced accumulation of AOS transcripts. These results suggest that a potent inhibition of JA biosynthetic capacity in leaves can be affected by SA or aspirin at the level of AOS gene expression.