40 resultados para Embryo sac development


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Factors that regulate cellular migration during embryonic development are essential for tissue and organ morphogenesis. Scatter factor/hepatocyte growth factor (SF/HGF) can stimulate motogenic and morphogenetic activities in cultured epithelial cells expressing the Met tyrosine kinase receptor and is essential for development; however, the precise physiological role of SF/HGF is incompletely understood. Here we provide functional evidence that inappropriate expression of SF/HGF in transgenic mice influences the development of two distinct migratory cell lineages, resulting in ectopic skeletal muscle formation and melanosis in the central nervous system, and patterned hyperpigmentation of the skin. Committed TRP-2 positive melanoblasts were found to be situated aberrantly within defined regions of the transgenic embryo, including the neural tube, which overproduced SF/RGF. Our data strongly suggest that SF/HGF possesses physiologically relevant scatter activity, and functions as a true morphogenetic factor by regulating migration and/or differentiation of select populations of premyogenic and neural crest cells during normal mammalian embryogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms that initiate reproductive development after fertilization are not understood. Reproduction in higher plants is unique because it is initiated by two fertilization events in the haploid female gametophyte. One sperm nucleus fertilizes the egg to form the embryo. A second sperm nucleus fertilizes the central cell to form the endosperm, a unique tissue that supports the growth of the embryo. Fertilization also activates maternal tissue differentiation, the ovule integuments form the seed coat, and the ovary forms the fruit. To investigate mechanisms that initiate reproductive development, a female-gametophytic mutation termed fie (fertilization-independent endosperm) has been isolated in Arabidopsis. The fie mutation specifically affects the central cell, allowing for replication of the central cell nucleus and endosperm development without fertilization. The fie mutation does not appear to affect the egg cell, suggesting that the processes that control the initiation of embryogenesis and endosperm development are different. FIE/fie seed coat and fruit undergo fertilization-independent differentiation, which shows that the fie female gametophyte is the source of signals that activates sporophytic fruit and seed coat development. The mutant fie allele is not transmitted by the female gametophyte. Inheritance of the mutant fie allele by the female gametophyte results in embryo abortion, even when the pollen bears the wild-type FIE allele. Thus, FIE carries out a novel, essential function for female reproductive development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presomitic and 3- to 12-somite pair cultured mouse embryos were deprived of retinoic acid (RA) by yolk-sac injections of antisense oligodeoxynucleotides for retinol binding protein (RBP). Inhibition of yolk-sac RBP synthesis was verified by immunohistochemistry, and the loss of activity of a lacZ-coupled RA-sensitive promoter demonstrated that embryos rapidly became RA-deficient. This deficiency resulted in malformations of the vitelline vessels, cranial neural tube, and eye, depending upon the stage of embryonic development at the time of antisense injection. Addition of RA to the culture medium at the time of antisense injection restored normal development implicating the role of RBP in embryonic RA synthesis. Furthermore, the induced RA deficiency resulted in early down-regulation of developmentally important genes including TGF-beta1 and Shh.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously, we elucidated the role of bone morphogenetic protein 4 (BMP-4) in the dorsal-ventral patterning of the Xenopus embryo by using a dominant negative mutant of the BMP-4 receptor (DN-BR). The present paper describes the involvement of Ras, Raf, and activator protein 1 (AP-1) in BMP-4 signaling during Xenopus embryonic development. The AP-1 activity was determined by injecting an AP-1-dependent luciferase reporter gene into two-cell-stage Xenopus embryos and measuring the luciferase activity at various developmental stages. We found that injection of BMP-4 mRNA increased AP-1 activity, whereas injection of DN-BR mRNA inhibited AP-1 activity. Similar inhibitory effects were seen with injection of mRNAs encoding dominant negative mutants of c-Ha-Ras, c-Raf, or c-Jun. These results suggest that the endogenous AP-1 activity is regulated by BMP-4/Ras/Raf/Jun signals. We next investigated the effects of Ras/Raf/AP-1 signals on the biological functions of BMP-4. DN-BR-induced dorsalization of the embryo, revealed by the formation of a secondary body axis or dorsalization of the ventral mesoderm explant analyzed by histological and molecular criteria, was significantly reversed by coinjection of [Val12]Ha-Ras, c-Raf, or c-Jun mRNA. Furthermore, the BMP-4-stimulated erythroid differentiation in the ventral mesoderm was substantially inhibited by coinjection with the dominant negative c-Ha-Ras, c-Raf, or c-Jun mutant. Our results suggest the involvement of Ras/Raf/AP-1 in the BMP-4 signaling pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertebrate hematopoietic stem cells are derived from vental mesoderm, which is postulated to migrate to both extra- and intraembryonic positions during gastrula and neurula stages. Extraembryonic migration has previously been documented, but the origin and migration of intraembryonic hematopoietic cells have not been visualized. The zebrafish and most other teleosts do not form yolk sac blood islands during early embryogenesis, but instead hematopoiesis occurs solely in a dorsal location known as the intermediate cell mass (IM) or Oellacher. In this report, we have isolated cDNAs encoding zebrafish homologs of the hematopoietic transcription factors GATA-1 and GATA-2 and have used these markers to determine that the IM is formed from mesodermal cells in a posterior-lateral position on the yolk syncytial layer of the gastrula yolk sac. Surprisingly, cells of the IM then migrate anteriorly through most of the body length prior to the onset of active circulation and exit onto the yolk sac. These findings support a hypothesis in which the hematopoietic program of vertebrates is established by variations in homologous migration pathways of extra- and intraembryonic progenitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the amniotes, two unique layers of cells, the epiblast and the hypoblast, constitute the embryo at the blastula stage. All the tissues of the adult will derive from the epiblast, whereas hypoblast cells will form extraembryonic yolk sac endoderm. During gastrulation, the endoderm and the mesoderm of the embryo arise from the primitive streak, which is an epiblast structure through which cells enter the interior. Previous investigations by others have led to the conclusion that the avian hypoblast, when rotated with regard to the epiblast, has inductive properties that can change the fate of competent cells in the epiblast to form an ectopic embryonic axis. Thus, it has been suggested that the hypoblast normally induces the epiblast to form a primitive streak at a specific locus. In the work reported here, an attempt was made to reexamine the issue of induction. In contrast to previous reports, it was found that the rotated hypoblast of the chicken embryo does not initiate formation of an ectopic axis in the epiblast. The embryonic axis always initiates and develops according to the basic polarity of the epiblast layer. These results provoke a reinterpretation of the issues of mesoderm induction and primitive streak initiation in the avian embryo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a reverse transcription-coupled PCR, we demonstrated that both brain and spleen type cannabinoid receptor (CB1-R and CB2-R, respectively) mRNAs are expressed in the preimplantation mouse embryo. The CB1-R mRNA expression was coincident with the activation of the embryonic genome late in the two-cell stage, whereas the CB2-R mRNA was present from the one-cell through the blastocyst stages. The major psychoactive component of marijuana (-)-delta-9-tetrahydrocannabinol [(-)-THC] inhibited forskolin-stimulated cAMP generation in the blastocyst, and this inhibition was prevented by pertussis toxin. However, the inactive cannabinoid cannabidiol (CBD) failed to influence this response. These results suggest that cannabinoid receptors in the embryo are coupled to inhibitory guanine nucleotide binding proteins. Further, the oviduct and uterus exhibited the enzymatic capacity to synthesize the putative endogenous cannabinoid ligand arachidonylethanolamide (anandamide). Synthetic and natural cannabinoid agonists [WIN 55,212-2, CP 55,940, (-)-THC, and anandamide], but not CBD or arachidonic acid, arrested the development of two-cell embryos primarily between the four-cell and eight-cell stages in vitro in a dose-dependent manner. Anandamide also interfered with the development of eight-cell embryos to blastocysts in culture. The autoradiographic studies readily detected binding of [3H]anandamide in embryos at all stages of development. Positive signals were present in one-cell embryos and all blastomeres of two-cell through four-cell embryos. However, most of the binding sites in eight-cell embryos and morulae were present in the outer cells. In the blastocyst, these signals were primarily localized in the mural trophectoderm with low levels of signals in the polar trophectoderm, while little or no signals were noted in inner cell mass cells.These results establish that the preimplantation mouse embryo is a target for cannabinoid ligands. Consequently, many of the adverse effects of cannabinoids observed during pregnancy could be mediated via these cannabinoid receptors. Although the physiological significance of the cannabinoid ligand-receptor signaling in normal preimplantation embryo development is not yet clear, the regulation of embryonic cAMP and/or Ca2+ levels via this signaling pathway may be important for normal embryonic development and/or implantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The homologous LAG-2 and APX-1 membrane proteins are putative signaling ligands in the GLP-1/LIN-12 signal-transduction pathway in Caenorhabditis elegans. Normally, LAG-2 and APX-1 mediate distinct cell interactions. Here, we demonstrate that APX-1, which normally interacts with GLP-1 in the early embryo, can substitute for LAG-2 throughout development. When expressed under control of the lag-2 promoter, an apx-1 cDNA can completely rescue a lag-2 null mutant. To substitute for LAG-2, APX-1 must be able to interact with both GLP-1 and LIN-12 receptors and to mediate a variety of cell interactions during development. Therefore, APX-1 and LAG-2 are essentially equivalent in their ability to influence receptor activity. On the basis of this result, we suggest that the existence of multiple-signaling ligands in the LIN-12/GLP-1 signal transduction pathway does not reflect the evolution of functionally distinct proteins but rather the imposition of distinct controls of gene expression upon functionally similar proteins. Finally, we propose that the specification of distinct cell fates by the LIN-12/GLP-1 signal-transduction pathway relies on activities functioning downstream of the ligand and receptor, rather than on specific ligand-receptor interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the sea urchin embryo, the lineage founder cells whose polyclonal progenies will give rise to five different territories are segregated at the sixth division. To investigate the mechanisms by which the fates of embryonic cells are first established, we looked for temporal and spatial expression of homeobox genes in the very early cleavage embryos. We report evidence that PlHbox12, a paired homeobox-containing gene, is expressed in the embryo from the 4-cell stage. The abundance of the transcripts reaches its maximum when the embryo has been divided into the five polyclonal territories--namely at the 64-cell stage--and it abruptly declines at later stages of development. Blastomere dissociation experiments indicate that maximal expression of PlHbox12 is dependent on intercellular interactions, thus suggesting that signal transduction mechanisms are responsible for its transcriptional activation in the early cleavage embryo. Spatial expression of PlHbox12 was determined by whole-mount in situ hybridization. PlHbox12 transcripts in embryos at the fourth, fifth, and sixth divisions seem to be restricted to the conditionally specified ectodermal lineages. These results suggest a possible role of the PlHbox12 gene in the early events of cell specification of the presumptive ectodermal territories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Programmed cell death (apoptosis) is an intrinsic part of organismal development and aging. Here we report that many nonsteroidal antiinflammatory drugs (NSAIDs) cause apoptosis when applied to v-src-transformed chicken embryo fibroblasts (CEFs). Cell death was characterized by morphological changes, the induction of tissue transglutaminase, and autodigestion of DNA. Dexamethasone, a repressor of cyclooxygenase (COX) 2, neither induced apoptosis nor altered the NSAID effect. Prostaglandin E2, the primary eicosanoid made by CEFs, also failed to inhibit apoptosis. Expression of the protooncogene bcl-2 is very low in CEFs and is not altered by NSAID treatment. In contrast, p20, a protein that may protect against apoptosis when fibroblasts enter G0 phase, was strongly repressed. The NSAID concentrations used here transiently inhibit COXs. Nevertheless, COX-1 and COX-2 mRNAs and COX-2 protein were induced. In some cell types, then, chronic NSAID treatment may lead to increased, rather than decreased, COX activity and, thus, exacerbate prostaglandin-mediated inflammatory effects. The COX-2 transcript is a partially spliced and nonfunctional form previously described. Thus, these findings suggest that COXs and their products play key roles in preventing apoptosis in CEFs and perhaps other cell types.