33 resultados para Educational needs derived from disability
Resumo:
Immunization of rodents and humans with irradiation-attenuated malaria sporozoites confers preerythrocytic stage-specific protective immunity to challenge infection. This immunity is directed against intrahepatic parasites and involves T cells and interferon gamma, which prevent development of exoerythrocytic stages and subsequent blood infection. The present study was undertaken to determine how protective immunity is achieved after immunization of rodent hosts with irradiated Plasmodium berghei sporozoites. We present evidence that irradiated parasites persist in hepatocytes of rats and mice for up to 6 months after immunization. A relationship between the persistence of parasites and the maintenance of protective immunity was observed. Protective immunity was abrogated in irradiated-sporozoite-immunized rats following the application of chemotherapy to remove preexisting liver parasites. Additionally, protective immunity against sporozoite challenge was established in rats vaccinated with early and late hepatic stages of irradiated parasites. These results show that irradiation-attenuated sporozoites produce persistent intrahepatic stages in vivo necessary for the induction and maintenance of protective immunity.
Resumo:
Conditional oncogene expression in transgenic mice is of interest for studying the oncoprotein requirements during tumorigenesis and for deriving cell lines that can be induced to undergo growth arrest and enhance their differentiated functions. We utilized the bacterial tetracycline (Tet)-resistance operon regulatory system (tet) from Tn10 of Escherichia coli to control simian virus 40 (SV40) large tumor (T) antigen (TAg) gene expression and to generate conditionally transformed pancreatic beta cells in transgenic mice. A fusion protein containing the tet repressor (tetR) and the activating domain of the herpes simplex virus protein VP16, which converts the repressor into a transcription activator, was produced in beta cells of transgenic mice under control of the insulin promoter. In a separate lineage of transgenic mice, the TAg gene was introduced under control of a tandem array of tet operator sequences and a minimal promoter, which by itself is not sufficient for gene expression. Mice from the two lineages were then crossed to generate double-transgenic mice. Expression of the tetR fusion protein in beta cells activated TAg transcription, resulting in the development of beta-cell tumors. Tumors arising in the absence of Tet were cultured to derive a stable beta-cell line. Cell incubation in the presence of Tet led to inhibition of proliferation, as shown by decreased BrdUrd and [3H]thymidine incorporation. The Tet derivative anhydrotetracycline showed a 100-fold stronger inhibition compared with Tet. When administered in vivo, Tet efficiently inhibited beta-cell proliferation. These findings indicate that transformed beta cells selected for growth during a tumorigenesis process in vivo maintain a dependence on the continuous presence of the TAg oncoprotein for their proliferation. This system provides an approach for generation of beta-cell lines for cell therapy of diabetes as well as conditionally transformed cell lines from other cell types of interest.
Resumo:
We describe the complete chemical synthesis of a ribozyme that catalyzes template-directed oligonucleotide ligation. The specific activity of the synthetic ribozyme is nearly identical to that of the same enzyme generated by in vitro transcription with T7 RNA polymerase. The ribozyme is derived from a group I intron and consists of three RNA fragments of 36, 43, and 59 nt that self-assemble to form a catalytically active complex. We have site-specifically substituted ribonucleotide analogs into this enzyme and have identified two 2'-hydroxyl groups that are required for full catalytic activity. In contrast, neither the 2'-hydroxyl nor the exocyclic amino group of the conserved guanosine in the guanosine binding site is necessary for catalysis. By allowing the ribozyme to be modified as easily as its substrates, this synthetic ribozyme system should be useful for testing specific hypotheses concerning ribozyme-substrate interactions and tertiary interactions within the ribozyme.