67 resultados para EPIDERMAL-KERATINOCYTES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ligands that activate the epidermal growth factor receptor (EGFR) are synthesized as membrane-anchored precursors that appear to be proteolytically released by members of the ADAM family of metalloproteases. Because membrane-anchored EGFR ligands are thought to be biologically active, the role of ligand release in the regulation of EGFR signaling is unclear. To investigate this question, we used metalloprotease inhibitors to block EGFR ligand release from human mammary epithelial cells. These cells express both transforming growth factor α and amphiregulin and require autocrine signaling through the EGFR for proliferation and migration. We found that metalloprotease inhibitors reduced cell proliferation in direct proportion to their effect on transforming growth factor α release. Metalloprotease inhibitors also reduced growth of EGF-responsive tumorigenic cell lines and were synergistic with the inhibitory effects of antagonistic EGFR antibodies. Blocking release of EGFR ligands also strongly inhibited autocrine activation of the EGFR and reduced both the rate and persistence of cell migration. The effects of metalloprotease inhibitors could be reversed by either adding exogenous EGF or by expressing an artificial gene for EGF that lacked a membrane-anchoring domain. Our results indicate that soluble rather than membrane-anchored forms of the ligands mediate most of the biological effects of EGFR ligands. Metalloprotease inhibitors have shown promise in preventing spread of metastatic disease. Many of their antimetastatic effects could be the result of their ability to inhibit autocrine signaling through the EGFR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epidermal growth factor (EGF) family of receptors (EGFR) is overproduced in estrogen receptor (ER) negative (−) breast cancer cells. An inverse correlation of the level of EGFR and ER is observed between ER− and ER positive (+) breast cancer cells. A comparative study with EGFR-overproducing ER− and low-level producing ER+ breast cancer cells suggests that EGF is a major growth-stimulating factor for ER− cells. An outline of the pathway for the EGF-induced enhanced proliferation of ER− human breast cancer cells is proposed. The transmission of mitogenic signal induced by EGF–EGFR interaction is mediated via activation of nuclear factor κB (NF-κB). The basal level of active NF-κB in ER− cells is elevated by EGF and inhibited by anti-EGFR antibody (EGFR-Ab), thus qualifying EGF as a NF-κB activation factor. NF-κB transactivates the cell-cycle regulatory protein, cyclin D1, which causes increased phosphorylation of retinoblastoma protein, more strongly in ER− cells. An inhibitor of phosphatidylinositol 3 kinase, Ly294–002, blocked this event, suggesting a role of the former in the activation of NF-κB by EGF. Go6976, a well-characterized NF-κB inhibitor, blocked EGF-induced NF-κB activation and up-regulation of cell-cycle regulatory proteins. This low molecular weight compound also caused apoptotic death, predominantly more in ER− cells. Thus Go6976 and similar NF-κB inhibitors are potentially novel low molecular weight therapeutic agents for treatment of ER− breast cancer patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The functional role of the interaction between c-Jun and simian virus 40 promoter factor 1 (Sp1) in epidermal growth factor (EGF)-induced expression of 12(S)-lipoxygenase gene in human epidermoid carcinoma A431 cells was studied. Coimmunoprecipitation experiments indicated that EGF stimulated interaction between c-Jun and Sp1 in a time-dependent manner. Overexpression of Ha-ras and c-Jun also enhanced the amount of c-Jun binding to Sp1. In addition, the c-Jun dominant negative mutant TAM-67 not only inhibited the coimmunoprecipitated c-Jun binding to Sp1 in a dose-dependent manner in cells overexpressing c-Jun but also reduced promoter activity of the 12(S)-lipoxygenase gene induced by c-Jun overexpression. Treatment of cells with EGF increased the interaction between the Sp1 oligonucleotide and nuclear c-Jun/Sp1 in a time-dependent manner. Furthermore, EGF activated the chimeric promoter consisting of 10 tandem GAL4-binding sites, which replaced the three Sp1-binding sites in the 12(S)lipoxygenase promoter only when coexpressed with GAL4-c-Jun () fusion proteins. These results indicate that the direct interaction between c-Jun and Sp1 induced by EGF cooperatively activated expression of the 12(S)-lipoxygenase gene, and that Sp1 may serve at least in part as a carrier bringing c-Jun to the promoter, thus transactivating the transcriptional activity of 12(S)-lipoxygenase gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The premature photoaging of the skin is mediated by the sensitization of reactive oxygen species after absorption of ultraviolet radiation by endogenous chromophores. Yet identification of UV-A-absorbing chromophores in the skin that quantitatively account for the action spectra of the physiological responses of photoaging has remained elusive. This paper reports that the in vitro action spectrum for singlet oxygen generation after excitation of trans-urocanic acid mimics the in vivo UV-A action spectrum for the photosagging of mouse skin. The data presented provide evidence suggesting that the UV-A excitation of trans-urocanic acid initiates chemical processes that result in the photoaging of skin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Keratins 14 and 5 are the structural hallmarks of the basal keratinocytes of the epidermis and outer root sheath (ORS) of the hair follicle. Their genes are controlled in a tissue-specific manner and thus serve as useful tools to elucidate the regulatory mechanisms involved in keratinocyte-specific transcription. Previously we identified several keratinocyte-specific DNase I hypersensitive sites (HSs) in the 5′ regulatory sequences of the K14 gene and showed that a 700-bp regulatory domain encompassing HSs II and III can confer epidermal and ORS-specific gene expression in transgenic mice in vivo. Although HS II harbored much of the transactivation activity in vitro, it was not sufficient to restrict expression to keratinocytes in vivo. We now explore the HS III regulatory element. Surprisingly, this element on its own confers gene expression to the keratinocytes of the inner root sheath (IRS) of the hair follicle, whereas a 275-bp DNA fragment containing both HSs II and III shifts the expression from the IRS to the basal keratinocytes and ORS in vivo. Electrophoretic mobility-shift assays and mutational studies of HSs III reveal a role for CACCC-box binding proteins, Sp1 family members, and other factors adding to the list of previously described factors that are involved in keratinocyte-specific gene expression. These studies highlight a cooperative interaction of the two HSs domains and strengthen the importance of combinatorial play of transcription factors that govern keratinocyte-specific gene regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) stimulates the homodimerization of EGF receptor (EGFR) and the heterodimerization of EGFR and ErbB2. The EGFR homodimers are quickly endocytosed after EGF stimulation as a means of down-regulation. However, the results from experiments on the ability of ErbB2 to undergo ligand-induced endocytosis are very controversial. It is unclear how the EGFR–ErbB2 heterodimers might behave. In this research, we showed by subcellular fractionation, immunoprecipitation, Western blotting, indirect immunofluorescence, and microinjection that, in the four breast cancer cell lines MDA453, SKBR3, BT474, and BT20, the EGFR–ErbB2 heterodimerization levels were positively correlated with the ratio of ErbB2/EGFR expression levels. ErbB2 was not endocytosed in response to EGF stimulation. Moreover, in MDA453, SKBR3, and BT474 cells, which have very high levels of EGFR–ErbB2 heterodimerization, EGF-induced EGFR endocytosis was greatly inhibited compared with that in BT20 cells, which have a very low level of EGFR–ErbB2 heterodimerization. Microinjection of an ErbB2 expression plasmid into BT20 cells significantly inhibited EGF-stimulated EGFR endocytosis. Coexpression of ErbB2 with EGFR in 293T cells also significantly inhibited EGF-stimulated EGFR endocytosis. EGF did not stimulate the endocytosis of ectopically expressed ErbB2 in BT20 and 293T cells. These results indicate that ErbB2 and the EGFR–ErbB2 heterodimers are impaired in EGF-induced endocytosis. Moreover, when expressed in BT20 cells by microinjection, a chimeric receptor composed of the ErbB2 extracellular domain and the EGFR intracellular domain underwent normal endocytosis in response to EGF, and this chimera did not block EGF-induced EGFR endocytosis. Thus, the endocytosis deficiency of ErbB2 is due to the sequence of its intracellular domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proliferative compartment of stratified squamous epithelia consists of stem and transient amplifying (TA) keratinocytes. Some polypeptides are more abundant in putative epidermal stem cells than in TA cells, but no polypeptide confined to the stem cells has yet been identified. Here we show that the p63 transcription factor, a p53 homologue essential for regenerative proliferation in epithelial development, distinguishes human keratinocyte stem cells from their TA progeny. Within the cornea, nuclear p63 is expressed by the basal cells of the limbal epithelium, but not by TA cells covering the corneal surface. Human keratinocyte stem and TA cells when isolated in culture give rise to holoclones and paraclones, respectively. We show by clonal analysis that p63 is abundantly expressed by epidermal and limbal holoclones, but is undetectable in paraclones. TA keratinocytes, immediately after their withdrawal from the stem cell compartment (meroclones), have greatly reduced p63, even though they possess very appreciable proliferative capacity. Clonal evolution (i.e., generation of TA cells from precursor stem cells) is promoted by the sigma isoform of the 14-3-3 family of proteins. Keratinocytes whose 14-3-3σ has been down-regulated remain in the stem cell compartment and maintain p63 during serial cultivation. The identification of p63 as a keratinocyte stem cell marker will be of practical importance for the clinical application of epithelial cultures in cell therapy as well as for studies on epithelial tumorigenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell shape plays a role in cell growth, differentiation, and death. Herein, we used the hepatocyte, a normal, highly differentiated cell characterized by a long G1 phase, to understand the mechanisms that link cell shape to growth. First, evidence was provided that the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) cascade is a key transduction pathway controlling the hepatocyte morphology. MEK2/ERK2 activation in early G1 phase did not lead to cell proliferation but induced cell shape spreading and demonstration was provided that this MAPK-dependent spreading was required for reaching G1/S transition and DNA replication. Moreover, epidermal growth factor (EGF) was found to control this morphogenic signal in addition to its mitogenic effect. Thus, blockade of cell spreading by cytochalasin D or PD98059 treatment resulted in inhibition of EGF-dependent DNA replication. Our data led us to assess the first third of G1, is exclusively devoted to the growth factor-dependent morphogenic events, whereas the mitogenic signal occured at only approximately mid-G1 phase. Moreover, these two growth factor-related sequential signaling events involved successively activation of MEK2-ERK2 and then MEK1/2-ERK1/2 isoforms. In addition, we demonstrated that inhibition of extracellular matrix receptor, such as integrin β1 subunit, leads to cell arrest in G1, whereas EGF was found to up-regulated integrin β1 and fibronectin in a MEK-ERK–dependent manner. This process in relation to cytoskeletal reorganization could induce hepatocyte spreading, making them permissive for DNA replication. Our results provide new insight into the mechanisms by which a growth factor can temporally control dual morphogenic and mitogenic signals during the G1 phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcriptional response to epidermal growth factor (EGF) was examined in a cultured cell model of adhesion. Gene expression was monitored in human embryonic kidney cells (HEK293) after attachment of cells to the extracellular matrix (ECM) proteins, laminin, and fibronectin, by using complementary DNA micorarrays printed with 1,718 individual human genes. Cluster analysis revealed that the influence of EGF on gene expression, either positive or negative, was largely independent of ECM composition. However, clusters of EGF-regulated genes were identified that were diagnostic of the type of ECM proteins to which cells were attached. In these clusters, attachment of cells to a laminin or fibronectin substrata specifically modified the direction of gene expression changes in response to EGF stimulation. For example, in HEK293 cells attached to fibronectin, EGF stimulated an increase in the expression of some genes; however, genes in the same group were nonresponsive or even suppressed in cells attached to laminin. Many of the genes regulated by EGF and ECM proteins in this manner are involved in ECM and cytoskeletal architecture, protein synthesis, and cell cycle control, indicating that cell responses to EGF stimulation can be dramatically affected by ECM composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noninvasive, ion-selective vibrating microelectrodes were used to measure the kinetics of H+, Ca2+, K+, and Cl− fluxes and the changes in their concentrations caused by illumination near the mesophyll and attached epidermis of bean (Vicia faba L.). These flux measurements were related to light-induced changes in the plasma membrane potential. The influx of Ca2+ was the main depolarizing agent in electrical responses to light in the mesophyll. Changes in the net fluxes of H+, K+, and Cl− occurred only after a significant delay of about 2 min, whereas light-stimulated influx of Ca2+ began within the time resolution of our measurements (5 s). In the absence of H+ flux, light caused an initial quick rise of external pH near the mesophyll and epidermal tissues. In the mesophyll this fast alkalinization was followed by slower, oscillatory pH changes (5–15 min); in the epidermis the external pH increased steadily and reached a plateau 3 min later. We explain the initial alkalinization of the medium as a result of CO2 uptake by photosynthesizing tissue, whereas activation of the plasma membrane H+ pump occurred 1.5 to 2 min later. The epidermal layer seems to be a substantial barrier for ion fluxes but not for CO2 diffusion into the leaf.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extracellular domain of p185c-neu can be viewed as a complex structure of four subdomains, two of which are cysteine-rich subdomains. We have investigated the contribution of these distinct p185c-neu extracellular subdomains to p185/epidermal growth factor receptor (EGFR) heteromer formation and EGF-induced heteromeric signaling. Our studies indicate that at least two separate p185 subdomains, a region spanning subdomains I and II and subdomain IV are involved in association of p185 with the EGFR. We also demonstrated that subdomain IV reduced the heteromeric signaling and transforming activities induced by EGF after associating with EGFR. When 126 aa were deleted from subdomain IV, this small subdomain IV-derived fragment could still lead to heterodimers with EGFR and suppress EGF-induced mitogen-activated protein kinase activation and subsequent transformation abilities. These data provide information about trans-inhibitory mechanisms of mutant p185 species and also indicate that both the entire and a part of subdomain IV may represent a therapeutic target for erbB-overexpressing tumors. Finally, these studies define a basic feature of receptor-receptor associations that are determined by cystine-knot containing subdomains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Normal epithelial cells undergo apoptosis when they are denied contact with the extracellular matrix, in a process termed “anoikis.” Conversely, malignant epithelial cells typically acquire anchorage independence, i.e., the capacity to survive and grow in the absence of matrix interaction. Here we asked the question whether anoikis is affected by signaling through the EGF receptor (EGFR). We focused on the EGFR because EGFR signaling is frequently deregulated in malignant epithelial cells. We demonstrate that EGFR activation markedly alleviated the requirement of matrix engagement for survival of primary and immortalized human keratinocytes in suspension culture. Protection of epithelial cells through EGFR activation against anoikis was associated with and required sustained MAPK phosphorylation during the early phase of suspension culture. Interestingly, high levels of MAPK phosphorylation were not only required for EGFR-mediated protection against anoikis but also occurred as a consequence of caspase activation at later stages of suspension culture. These results demonstrate that EGFR activation contributes to anchorage-independent epithelial cell survival and identify MAPK activation as an important mechanism in this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In prostanoid biosynthesis, the first two steps are catalyzed by cyclooxygenases (COX). In mice and humans, deregulated expression of COX-2, but not of COX-1, is characteristic of epithelial tumors, including squamous cell carcinomas of skin. To explore the function of COX-2 in epidermis, a keratin 5 promoter was used to direct COX-2 expression to the basal cells of interfollicular epidermis and the pilosebaceous appendage of transgenic mouse skin. COX-2 overexpression in the expected locations, resulting in increased prostaglandin levels in epidermis and plasma, correlated with a pronounced skin phenotype. Heterozygous transgenic mice exhibited a reduced hair follicle density. Moreover, postnatally hair follicle morphogenesis and thinning of interfollicular dorsal epidermis were delayed. Adult transgenics showed a body-site-dependent sparse coat of greasy hair, the latter caused by sebaceous gland hyperplasia and increased epicutaneous sebum levels. In tail skin, hyperplasia of scale epidermis reflecting an increased number of viable and cornified cell layers was observed. Hyperplasia was a result of a disturbed program of epidermal differentiation rather than an increased proliferation rate, as reflected by the strong suppression of keratin 10, involucrin, and loricrin expression in suprabasal cells. Further pathological signs were loss of cell polarity, mainly of basal keratinocytes, epidermal invaginations into the dermis, and formation of horn perls. Invaginating hyperplastic lobes were surrounded by CD31-positive vessels. These results demonstrate a causal relationship between transgenic COX-2 expression in basal keratinocytes and epidermal hyperplasia as well as dysplastic features at discrete body sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquaporins are integral membrane proteins of the tonoplast and the plasma membrane that facilitate the passage of water through these membranes. Because of their potentially important role in regulating water flow in plants, studies documenting aquaporin gene expression in specialized tissues involved in water and solute transport are important. We used in situ hybridization to examine the expression pattern of the tonoplast aquaporin ZmTIP1 in different organs of maize (Zea mays L.). This tonoplast water channel is highly expressed in the root epidermis, the root endodermis, the small parenchyma cells surrounding mature xylem vessels in the root and the stem, phloem companion cells and a ring of cells around the phloem strand in the stem and the leaf sheath, and the basal endosperm transfer cells in developing kernels. We postulate that the high level of expression of ZmTIP1 in these tissues facilitates rapid flow of water through the tonoplast to permit osmotic equilibration between the cytosol and the vacuolar content, and to permit rapid transcellular water flow through living cells when required.