34 resultados para ECDYSTEROID TITER
Resumo:
Expression cloning of cDNAs was first described a decade ago and was based on transient expression of cDNA libraries in COS cells. In contrast to transient transfection of plasmids, retroviral gene transfer delivers genes stably into a wide range of target cells. We utilize a simple packaging system for production of high-titer retrovirus stock from cDNA libraries to establish a cDNA expression cloning system. In two model experiments, murine interleukin (IL)-3-dependent Ba/F3 cells were infected with libraries of retrovirally expressed cDNA derived from human T-cell mRNA or human IL-3-dependent TF-1 cell line mRNA. These infected Ba/F3 cells were selected for the expression of CD2 by flow cytometry or for the alpha subunit of the human IL-3 receptor (hIL-3R alpha) by factor-dependent growth. CD2 (frequency, 1 in 10(4)) and hIL-3R alpha (frequency, 1 in 1.5 x 10(5)) cDNAs were readily detected in small-scale experiments, indicating this retroviral expression cloning system is efficient enough to clone low-abundance cDNAs by their expression or function.
Resumo:
Hammerhead ribozyme sequences were incorporated into a tyrosine tRNA (tRNA(Tyr)) and compared with nonembedded molecules. To increase the levels of ribozyme and control antisense in vivo, sequences were expressed from an autonomously replicating vector derived from African cassava mosaic geminivirus. In vitro, the nonembedded ribozyme cleaved more target RNA, encoding chloramphenicol acetyltransferase (CAT), than the tRNA(Tyr) ribozyme. In contrast, the tRNA(Tyr) ribozyme was considerably more effective in vivo than either the nonembedded ribozyme or antisense sequences, reducing CAT activity to < 20% of the control level. A target sequence (CM2), mutated to be noncleavable, showed no reduction in CAT activity in the presence of the tRNA(Tyr) ribozyme beyond that for the antisense construct. The reduction in full-length CAT mRNA and the presence of specific cleavage products demonstrated in vivo cleavage of the target mRNA by the tRNA(Tyr) ribozyme. The high titer of tRNA(Tyr) ribozyme was a result of transcription from the RNA polymerase III promoter and led to the high ribozyme/substrate ratio essential for ribozyme efficiency.
Resumo:
Several models have been proposed for the infectious agents that cause human Creutzfeldt-Jakob disease (CJD) and sheep scrapie. Purified proteins and extracted nucleic acids are not infectious. To further identify the critical molecular components of the CJD agent, 120S infectious material with reduced prion protein (PrP) was treated with guanidine hydrochloride or SDS. Particulate and soluble components were then separated by centrifugation and molecularly characterized. Conditions that optimally solubilized residual PrP and/or nucleic acid-protein complexes were used to produce subfractions that were assayed for infectivity. All controls retained > 90% of the 120S titer (approximately 15% of that in total brain) but lost > 99.5% of their infectivity after heat-SDS treatment (unlike scrapie fractions enriched for PrP). Exposure to 1% SDS at 22 degrees C produced particulate nucleic acid-protein complexes that were almost devoid of host PrP. These sedimenting complexes were as infectious as the controls. In contrast, when such complexes were solubilized with 2.5 M guanidine hydrochloride, the infectious titer was reduced by > 99.5%. Sedimenting PrP aggregates with little nucleic acid and no detectable nucleic acid-binding proteins had negligible infectivity, as did soluble but multimeric forms of PrP. These data strongly implicate a classical viral structure, possibly with no intrinsic PrP, as the CJD infectious agent. CJD-specific protective nucleic acid-binding protein(s) have already been identified in 120S preparations, and preliminary subtraction studies have revealed several CJD-specific nucleic acids. Such viral candidates deserve more attention, as they may be of use in preventing iatrogenic CJD and in solving a fundamental mystery.
Resumo:
Adenoviral vectors are widely used as highly efficient gene transfer vehicles in a variety of biological research strategies including human gene therapy. One of the limitations of the currently available adenoviral vector system is the presence of the majority of the viral genome in the vector, resulting in leaky expression of viral genes particularly at high multiplicity of infection and limited cloning capacity of exogenous sequences. As a first step to overcome this problem, we attempted to rescue a defective human adenovirus serotype 5 DNA, which had an essential region of the viral genome (L1, L2, VAI + II, pTP) deleted and replaced with an indicator gene. In the presence of wild-type adenovirus as a helper, this DNA was packaged and propagated as transducing viral particles. After several rounds of amplification, the titer of the recombinant virus reached at least 4 x 10(6) transducing particles per ml. The recombinant virus could be partially purified from the helper virus by CsCl equilibrium density-gradient centrifugation. The structure of the recombinant virus around the marker gene remained intact after serial propagation, while the pBR sequence inserted in the E1 region was deleted from the recombinant virus. Our results suggest that it should be possible to develop a helper-dependent adenoviral vector, which does not encode any viral proteins, as an alternative to the currently available adenoviral vector systems.