72 resultados para Domain-specific analysis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three different cDNAs, Prh-19, Prh-26, and Prh-43 [3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase homolog], have been isolated by complementation of an Escherichia coli cysH mutant, defective in PAPS reductase activity, to prototrophy with an Arabidopsis thaliana cDNA library in the expression vector λYES. Sequence analysis of the cDNAs revealed continuous open reading frames encoding polypeptides of 465, 458, and 453 amino acids, with calculated molecular masses of 51.3, 50.5, and 50.4 kDa, respectively, that have strong homology with fungal, yeast, and bacterial PAPS reductases. However, unlike microbial PAPS reductases, each PRH protein has an N-terminal extension, characteristic of a plastid transit peptide, and a C-terminal extension that has amino acid and deduced three-dimensional homology to thioredoxin proteins. Adenosine 5′-phosphosulfate (APS) was shown to be a much more efficient substrate than PAPS when the activity of the PRH proteins was tested by their ability to convert 35S-labeled substrate to acid-volatile 35S-sulfite. We speculate that the thioredoxin-like domain is involved in catalytic function, and that the PRH proteins may function as novel “APS reductase” enzymes. Southern hybridization analysis showed the presence of a small multigene family in the Arabidopsis genome. RNA blot hybridization with gene-specific probes revealed for each gene the presence of a transcript of ≈1.85 kb in leaves, stems, and roots that increased on sulfate starvation. To our knowledge, this is the first report of the cloning and characterization of plant genes that encode proteins with APS reductase activity and supports the suggestion that APS can be utilized directly, without activation to PAPS, as an intermediary substrate in reductive sulfate assimilation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interaction between a peptide hormone and extracellular domains of its receptor is a crucial step for initiation of hormone action. We have developed a modification of the yeast two-hybrid system to study this interaction and have used it to characterize the interaction of insulin-like growth factor 1 (IGF-1) with its receptor by using GAL4 transcriptional regulation with a β-galactosidase assay as readout. In this system, IGF-1 and proIGF-1 bound to the cysteine-rich domain, extracellular domain, or entire IGF-1 proreceptor. This interaction was specific. Thus, proinsulin showed no significant interaction with the IGF-1 receptor, while a chimeric proinsulin containing the C-peptide of IGF-1 had an intermediate interaction, consistent with its affinity for the IGF-1 receptor. Over 2000 IGF-1 mutants were generated by PCR and screened for interaction with the color assay. About 40% showed a strong interaction, 20% showed an intermediate interaction, and 40% give little or no signal. Of 50 mutants that were sequenced, several (Leu-5 → His, Glu-9 → Val, Arg-37 → Gly, and Met-59 → Leu) appeared to enhance receptor association, others resulted in weaker receptor interaction (Tyr-31 → Phe and Ile-43 → Phe), and two gave no detectable signal (Leu-14 → Arg and Glu-46 → Ala). Using PCR-based mutagenesis with proinsulin, we also identified a gain of function mutant (proinsulin Leu-17 → Pro) that allowed for a strong IGF-1–receptor interaction. These data demonstrate that the specificity of the interaction between a hormone and its receptor can be characterized with high efficiency in the two-hybrid system and that novel hormone analogues may be found by this method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In an effort to identify nuclear receptors important in retinal disease, we screened a retina cDNA library for nuclear receptors. Here we describe the identification of a retina-specific nuclear receptor (RNR) from both human and mouse. Human RNR is a splice variant of the recently published photoreceptor cell-specific nuclear receptor [Kobayashi, M., Takezawa, S., Hara, K., Yu, R. T., Umesono, Y., Agata, K., Taniwaki, M., Yasuda, K. & Umesono, K. (1999) Proc. Natl. Acad. Sci. USA 96, 4814–4819] whereas the mouse RNR is a mouse ortholog. Northern blot and reverse transcription–PCR analyses of human mRNA samples demonstrate that RNR is expressed exclusively in the retina, with transcripts of ≈7.5 kb, ≈3.0 kb, and ≈2.3 kb by Northern blot analysis. In situ hybridization with multiple probes on both primate and mouse eye sections demonstrates that RNR is expressed in the retinal pigment epithelium and in Müller glial cells. By using the Gal4 chimeric receptor/reporter cotransfection system, the ligand binding domain of RNR was found to repress transcriptional activity in the absence of exogenous ligand. Gel mobility shift assays revealed that RNR can interact with the promoter of the cellular retinaldehyde binding protein gene in the presence of retinoic acid receptor (RAR) and/or retinoid X receptor (RXR). These data raise the possibility that RNR acts to regulate the visual cycle through its interaction with cellular retinaldehyde binding protein and therefore may be a target for retinal diseases such as retinitis pigmentosa and age-related macular degeneration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deletions of all or part of chromosome 10 are the most common genetic alterations in high-grade gliomas. The PTEN gene (also called MMAC1 and TEP1) maps to chromosome region 10q23 and has been implicated as a target of alteration in gliomas and also in other cancers such as those of the breast, prostate, and kidney. Here we sought to provide a functional test of its candidacy as a growth suppressor in glioma cells. We used a combination of Northern blot analysis, protein truncation assays, and sequence analysis to determine the types and frequency of PTEN mutations in glioma cell lines so that we could define appropriate recipients to assess the growth suppressive function of PTEN by gene transfer. Introduction of wild-type PTEN into glioma cells containing endogenous mutant alleles caused growth suppression, but was without effect in cells containing endogenous wild-type PTEN. The ectopic expression of PTEN alleles, which carried mutations found in primary tumors and have been shown or are expected to inactivate its phosphatase activity, caused little growth suppression. These data strongly suggest that PTEN is a protein phosphatase that exhibits functional and specific growth-suppressing activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Posttranslational modification of Rab proteins by geranylgeranyltransferase type II requires that they first bind to Rab escort protein (REP). Following prenylation, REP is postulated to accompany the modified GTPase to its specific target membrane. REP binds preferentially to Rab proteins that are in the GDP state, but the specific structural domains involved in this interaction have not been defined. In p21 Ras, the α2 helix of the Switch 2 domain undergoes a major conformational change upon GTP hydrolysis. Therefore, we hypothesized that the corresponding region in Rab1B might play a key role in the interaction with REP. Introduction of amino acid substitutions (I73N, Y78D, and A81D) into the putative α2 helix of Myc-tagged Rab1B prevented prenylation of the recombinant protein in cell-free assays, whereas mutations in the α3 and α4 helices did not. Additionally, upon transient expression in transfected HEK-293 cells, the Myc-Rab1B α2 helix mutants were not efficiently prenylated as determined by incorporation of [3H]mevalonate. Metabolic labeling studies using [32P]orthophosphate indicated that the poor prenylation of the Rab1B α2 helix mutants was not directly correlated with major disruptions in guanine nucleotide binding or intrinsic GTPase activity. Finally, gel filtration analysis of cytosolic fractions from 293 cells that were coexpressing T7 epitope-tagged REP with various Myc-Rab1B constructs revealed that mutations in the α2 helix of Rab1B prevented the association of nascent (i.e., nonprenylated) Rab1B with REP. These data indicate that the Switch 2 domain of Rab1B is a key structural determinant for REP interaction and that nucleotide-dependent conformational changes in this region are largely responsible for the selective interaction of REP with the GDP-bound form of the Rab substrate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multiple isoforms of type 1 hexokinase (HK1) are transcribed during spermatogenesis in the mouse, including at least three that are presumably germ cell specific: HK1-sa, HK1-sb, and HK1-sc. Each of these predicted proteins contains a common, germ cell-specific sequence that replaces the porin-binding domain found in somatic HK1. Although HK1 protein is present in mature sperm and is tyrosine phosphorylated, it is not known whether the various potential isoforms are differentially translated and localized within the developing germ cells and mature sperm. Using antipeptide antisera against unique regions of HK1-sa and HK1-sb, it was demonstrated that these isoforms were not found in pachytene spermatocytes, round spermatids, condensing spermatids, or sperm, suggesting that HK1-sa and HK1-sb are not translated during spermatogenesis. Immunoreactivity was detected in protein from round spermatids, condensing spermatids, and mature sperm using an antipeptide antiserum against the common, germ cell-specific region, suggesting that HK1-sc was the only germ cell-specific isoform present in these cells. Two-dimensional SDS-PAGE suggested that all of the sperm HK1-sc was tyrosine phosphorylated, and that the somatic HK1 isoform was not present. Immunoelectron microscopy revealed that HK1-sc was associated with the mitochondria and with the fibrous sheath of the flagellum and was found in discrete clusters in the region of the membranes of the sperm head. The unusual distribution of HK1-sc in sperm suggests novel functions, such as extramitochondrial energy production, and also demonstrates that a hexokinase without a classical porin-binding domain can localize to mitochondria.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The specificity of protein–protein interactions in cellular signaling cascades is dependent on the sequence and intramolecular location of distinct amino acid motifs. We used the two-hybrid interaction trap to identify proteins that can associate with the PDZ motif-rich segment in the protein tyrosine phosphatase PTP-BL. A specific interaction was found with the Lin-11, Isl-1, Mec-3 (LIM) domain containing protein RIL. More detailed analysis demonstrated that the binding specificity resides in the second and fourth PDZ motif of PTP-BL and the LIM domain in RIL. Immunohistochemistry on various mouse tissues revealed a submembranous colocalization of PTP-BL and RIL in epithelial cells. Remarkably, there is also an N-terminal PDZ motif in RIL itself that can bind to the RIL-LIM domain. We demonstrate here that the RIL-LIM domain can be phosphorylated on tyrosine in vitro and in vivo and can be dephosphorylated in vitro by the PTPase domain of PTP-BL. Our data point to the presence of a double PDZ-binding interface on the RIL-LIM domain and suggest tyrosine phosphorylation as a regulatory mechanism for LIM-PDZ associations in the assembly of multiprotein complexes. These findings are in line with an important role of PDZ-mediated interactions in the shaping and organization of submembranous microenvironments of polarized cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

T cell activation rapidly and transiently regulates the functional activity of integrin receptors. Stimulation of CD3/T cell receptor, CD2 or CD28, as well as activation with phorbol esters, can induce within minutes an increase in β1 integrin-mediated adhesion of T cells to fibronectin. In this study, we have produced and utilized a mutant of the Jurkat T cell line, designated A1, that lacks protein and mRNA expression of the β1 integrin subunit but retains normal levels of CD2, CD3, and CD28 on the cell surface. Activation-dependent adhesion of A1 cells to fibronectin could be restored upon transfection of a wild-type human β1 integrin cDNA. Adhesion induced by phorbol 12-myristate 13-acetate-, CD3-, CD2-, and CD28 stimulation did not occur if the carboxy-terminal five amino acids of the β1 tail were truncated or if either of two well-conserved NPXY motifs were deleted. Scanning alanine substitutions of the carboxy-terminal five amino acids demonstrated a critical role for the tyrosine residue at position 795. The carboxy-terminal truncation and the NPXY deletions also reduced adhesion induced by direct stimulation of the β1 integrin with the activating β1 integrin-specific mAb TS2/16, although the effects were not as dramatic as observed with the other integrin-activating signals. These results demonstrate a vital role for the amino-terminal NPXY motif and the carboxy-terminal end of the β1 integrin cytoplasmic domain in activation-dependent regulation of integrin-mediated adhesion in T cells. Furthermore, the A1 cell line represents a valuable new cellular reagent for the analysis of β1 integrin structure and function in human T cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Janus kinase 2 (Jak2) protein tyrosine kinase plays an important role in interleukin-3– or granulocyte–macrophage colony-stimulating factor–mediated signal transduction pathways leading to cell proliferation, activation of early response genes, and inhibition of apoptosis. However, it is unclear whether Jak2 can activate these signaling pathways directly without the involvement of cytokine receptor phosphorylation. To investigate the specific role of Jak2 in the regulation of signal transduction pathways, we generated gyrase B (GyrB)–Jak2 fusion proteins, dimerized through the addition of coumermycin. Coumermycin induced autophosphorylation of GyrB–Jak2 fusion proteins, thus bypassing receptor activation. Using different types of chimeric Jak2 molecules, we observed that although the kinase domain of Jak2 is sufficient for autophosphorylation, the N-terminal regions are essential for the phosphorylation of Stat5 and for the induction of short-term cell proliferation. Moreover, coumermycin-induced activation of Jak2 can also lead to increased levels of c-myc and CIS mRNAs in BA/F3 cells stably expressing the Jak2 fusion protein with the intact N-terminal region. Conversely, activation of the chimeric Jak2 induced neither phosphorylation of Shc or SHP-2 nor activation of the c-fos promoter. Here, we showed that the GyrB–Jak2 system can serve as an excellent model to dissect signals of receptor-dependent and -independent events. We also obtained evidence indicating a role for the N-terminal region of Jak2 in downstream signaling events.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Myosin II heavy chain (MHC) specific protein kinase C (MHC-PKC), isolated from Dictyostelium discoideum, regulates myosin II assembly and localization in response to the chemoattractant cyclic AMP. Immunoprecipitation of MHC-PKC revealed that it resides as a complex with several proteins. We show herein that one of these proteins is a homologue of the 14–3-3 protein (Dd14–3-3). This protein has recently been implicated in the regulation of intracellular signaling pathways via its interaction with several signaling proteins, such as PKC and Raf-1 kinase. We demonstrate that the mammalian 14–3-3 ζ isoform inhibits the MHC-PKC activity in vitro and that this inhibition is carried out by a direct interaction between the two proteins. Furthermore, we found that the cytosolic MHC-PKC, which is inactive, formed a complex with Dd14–3-3 in the cytosol in a cyclic AMP-dependent manner, whereas the membrane-bound active MHC-PKC was not found in a complex with Dd14–3-3. This suggests that Dd14–3-3 inhibits the MHC-PKC in vivo. We further show that MHC-PKC binds Dd14–3-3 as well as 14–3-3ζ through its C1 domain, and the interaction between these two proteins does not involve a peptide containing phosphoserine as was found for Raf-1 kinase. Our experiments thus show an in vivo function for a member of the 14–3-3 family and demonstrate that MHC-PKC interacts directly with Dd14–3-3 and 14–3-3ζ through its C1 domain both in vitro and in vivo, resulting in the inhibition of the kinase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rd7 mouse, an animal model for hereditary retinal degeneration, has some characteristics similar to human flecked retinal disorders. Here we report the identification of a deletion in a photoreceptor-specific nuclear receptor (mPNR) mRNA that is responsible for hereditary retinal dysplasia and degeneration in the rd7 mouse. mPNR was isolated from a pool of photoreceptor-specific cDNAs originally created by subtractive hybridization of mRNAs from normal and photoreceptorless rd mouse retinas. Localization of the gene corresponding to mPNR to mouse Chr 9 near the rd7 locus made it a candidate for the site of the rd7 mutation. Northern analysis of total RNA isolated from rd7 mouse retinas revealed no detectable signal after hybridization with the mPNR cDNA probe. However, with reverse transcription–PCR, we were able to amplify different fragments of mPNR from rd7 retinal RNA and to sequence them directly. We found a 380-nt deletion in the coding region of the rd7 mPNR message that creates a frame shift and produces a premature stop codon. This deletion accounts for more than 32% of the normal protein and eliminates a portion of the DNA-binding domain. In addition, it may result in the rapid degradation of the rd7 mPNR message by the nonsense-mediated decay pathway, preventing the synthesis of the corresponding protein. Our findings demonstrate that mPNR expression is critical for the normal development and function of the photoreceptor cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

EGFRvIII is a mutant epidermal growth factor receptor found in glioblastoma, and in carcinoma of the breast, ovary, and lung. The mutant receptor has a deletion in its extracellular domain that results in the formation of a new, tumor-specific extracellular sequence. Mice were immunized with a synthetic peptide corresponding to this sequence and purified EGFRvIII. A single chain antibody variable domain (scFv) phage display library of 8 × 106 members was made from the spleen of one immunized mouse. A scFv specific for EGFRvIII was isolated from this library by panning with successively decreasing amounts of synthetic peptide. This was used to make an immunotoxin by fusing the scFv DNA sequence to sequences coding for domains II and III of Pseudomonas exotoxin A. Purified immunotoxin had a Kd of 22 nM for peptide and a Kd of 11 nM for cell-surface EGFRvIII. The immunotoxin was very cytotoxic to cells expressing EGFRvIII, with an IC50 of 1 ng/ml (16 pM) on mouse fibroblasts transfected with EGFRvIII and an IC50 of 7–10 ng/ml (110–160 pM) on transfected glioblastoma cells. There was no cytotoxic activity at 1000 ng/ml on the untransfected parent glioblastoma cell line. The immunotoxin was completely stable upon incubation at 37°C for 24 h in human serum. The combination of good affinity, cytotoxicity and stability make this immunotoxin a candidate for further preclinical evaluation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Desaturation of coenzyme-A esters of saturated fatty acids is a common feature of sex pheromone biosynthetic pathways in the Lepidoptera. The enzymes that catalyze this step share several biochemical properties with the ubiquitous acyl-CoA Δ9-desaturases of animals and fungi, suggesting a common ancestral origin. Unlike metabolic acyl-CoA Δ9-desaturases, pheromone desaturases have evolved unusual regio- and stereoselective activities that contribute to the remarkable diversity of chemical structures used as pheromones in this large taxonomic group. In this report, we describe the isolation of a cDNA encoding a pheromone gland desaturase from the cabbage looper moth, Trichoplusia ni, a species in which all unsaturated pheromone products are produced via a Δ11Z-desaturation mechanism. The largest ORF of the ≈1,250-bp cDNA encodes a 349-aa apoprotein (PDesat-Tn Δ11Z) with a predicted molecular mass of 40,240 Da. Its hydrophobicity profile is similar overall to those of rat and yeast Δ9-desaturases, suggesting conserved transmembrane topology. A 182-aa core domain delimited by conserved histidine-rich motifs implicated in iron-binding and catalysis has 72 and 58% similarity (including conservative substitutions) to acyl-CoA Δ9Z-desaturases of rat and yeast, respectively. Northern blot analysis revealed an ≈1,250-nt PDesat-Tn Δ11Z mRNA that is consistent with the spatial and temporal distribution of Δ11-desaturase enzyme activity. Genetic transformation of a desaturase-deficient strain of the yeast Saccharomyces cerevisiae with an expression plasmid encoding PDesat-Tn Δ11Z resulted in complementation of the strain’s fatty acid auxotrophy and the production of Δ11Z-unsaturated fatty acids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transcription factors belonging to the CCAAT-enhancer binding protein (C/EBP) family have been implicated in the regulation of gene expression during differentiation, development and disease. Autoregulation is relatively common in the modulation of C/EBP gene expression and the murine and human C/EBPα genes have been shown to be auto-activated by different mechanisms. In the light of this finding, it is essential that autoregulation of C/EBPα genes from a wider range of different species be investigated in order to gauge the degree of commonality, or otherwise, that may exist. We report here studies that investigate the regulation of the Xenopus laevis C/EBPα gene (xC/EBPα). The –1131/+41 promoter region was capable of directing high levels of expression in both the human hepatoma Hep3B and the Xenopus kidney epithelial A6 cell lines, and was auto-activated by expression vectors specifying for xC/EBPα or xC/EBPβ. Deletion analysis showed that the –321/+41 sequence was sufficient for both the constitutive promoter activity and auto-activation and electrophoretic mobility shift assays identified the interaction of C/EBPs and Sp1 to this region. Although deletion of either the C/EBP or the Sp1 site drastically reduced the xC/EBPα promoter activity, multimers of only the C/EBP site could confer autoregulation to a heterologous SV40 promoter. These results indicate that, in contrast to the human promoter and in common with the murine gene, the xC/EBPα promoter was subject to direct autoregulation. In addition, we demonstrate a novel species-specific action of Sp1 in the regulation of C/EBPα expression, with the factor able to repress the murine promoter but activate the Xenopus gene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bacterial tmRNA mediates a trans-translation reaction, which permits the recycling of stalled ribosomes and probably also contributes to the regulated expression of a subset of genes. Its action results in the addition of a small number of C-terminal amino acids to protein whose synthesis had stalled and these constitute a proteolytic recognition tag for the degradation of these incompletely synthesized proteins. Previous work has identified pseudoknots and stem–loops that are widely conserved in divergent bacteria. In the present work an alignment of tmRNA gene sequences within 13 β-proteobacteria reveals an additional sub-structure specific for this bacterial group. This sub-structure is in pseudoknot Pk2, and consists of one to two additional stem–loop(s) capped by stable GNRA tetraloop(s). Three-dimensional models of tmRNA pseudoknot 2 (Pk2) containing various topological versions of the additional sub-structure suggest that the sub-structures likely point away from the core of the RNA, containing both the tRNA and the mRNA domains. A putative tertiary interaction has also been identified.