66 resultados para Disruption
Resumo:
Alterations in serotonin (5-hydroxytriptamine, 5-HT), norepinephrine, and γ-aminobutyric acid have been linked to the pathophysiology of anxiety and depression, and medications that modulate these neurotransmitters are widely used to treat mood disorders. Recently, the neuropeptide substance P (SP) and its receptor, the neurokinin 1 receptor (NK1R), have been proposed as possible targets for new antidepressant and anxiolytic therapies. However, animal and human studies have so far failed to provide a clear consensus on the role of SP in the modulation of emotional states. Here we show that both genetic disruption and acute pharmacological blockade of the NK1R in mice result in a marked reduction of anxiety and stress-related responses. These behavioral changes are paralleled by an increase in the firing rate of 5-HT neurons in the dorsal raphe nucleus, a major source of serotonergic input to the forebrain. NK1R disruption also results in a selective desensitization of 5-HT1A inhibitory autoreceptors, which resembles the effect of sustained antidepressant treatment. Together these results indicate that the SP system powerfully modulates anxiety and suggest that this effect is at least in part mediated by changes in the 5-HT system.
Resumo:
KCNQ1 encodes KCNQ1, which belongs to a family of voltage-dependent K+ ion channel proteins. KCNQ1 associates with a regulatory subunit, KCNE1, to produce the cardiac repolarizing current, IKs. Loss-of-function mutations in the human KCNQ1 gene have been linked to Jervell and Lange–Nielsen Syndrome (JLNS), a disorder characterized by profound bilateral deafness and a cardiac phenotype. To generate a mouse model for JLNS, we created a line of transgenic mice that have a targeted disruption in the Kcnq1 gene. Behavioral analysis revealed that the Kcnq1−/− mice are deaf and exhibit a shaker/waltzer phenotype. Histological analysis of the inner ear structures of Kcnq1−/− mice revealed gross morphological anomalies because of the drastic reduction in the volume of endolymph. ECGs recorded from Kcnq1−/− mice demonstrated abnormal T- and P-wave morphologies and prolongation of the QT and JT intervals when measured in vivo, but not in isolated hearts. These changes are indicative of cardiac repolarization defects that appear to be induced by extracardiac signals. Together, these data suggest that Kcnq1−/− mice are a potentially valuable animal model of JLNS.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that have been implicated in a variety of biologic processes. The PPARδ isotype was recently proposed as a downstream target of the adenomatous polyposis coli (APC)/β-catenin pathway in colorectal carcinogenesis. To evaluate its role in tumorigenesis, a PPARδ null cell line was created by targeted homologous recombination. When inoculated as xenografts in nude mice, PPARδ −/− cells exhibited a decreased ability to form tumors compared with PPARδ +/− and wild-type controls. These data suggest that suppression of PPARδ expression contributes to the growth-inhibitory effects of the APC tumor suppressor.
Resumo:
Oncoprotein18/stathmin (Op18) is a microtubule (MT) destabilizing protein that is inactivated during mitosis by phosphorylation at four Ser-residues. Op18 has at least two functions; the N-terminal region is required for catastrophe-promotion (i.e., transition from elongation to shortening), while the C-terminal region is required to inhibit MT-polymerization rate in vitro. We show here that a “pseudophosphorylation” derivative of Op18 (i.e., four Ser- to Glu-substitutions at phosphorylation sites) exhibits a selective loss of catastrophe-promoting activity. This is contrasted to authentic phosphorylation, which efficiently attenuates all activities except tubulin binding. In intact cells, overexpression of pseudophosphorylated Op18, which is not phosphorylated by endogenous kinases, is shown to destabilize interphase MTs but to leave spindle formation untouched. To test if the mitotic spindle is sensitive only to the catastrophe-promoting activity of Op18 and resistant to C-terminally associated activities, N- and C-terminal truncations with defined activity-profiles were employed. The cell-cycle phenotypes of nonphosphorylatable mutants (i.e., four Ser- to Ala-substitutions) of these truncation derivatives demonstrated that catastrophe promotion is required for interference with the mitotic spindle, while the C-terminally associated activities are sufficient to destabilize interphase MTs. These results demonstrate that specific Op18 derivatives with defined activity-profiles can be used as probes to distinguish interphase and mitotic MTs.
Resumo:
The NUP98 gene encodes precursor proteins that generate two nucleoplasmically oriented nucleoporins, NUP98 and NUP96. By using gene targeting, we have selectively disrupted the murine NUP98 protein, leaving intact the expression and localization of NUP96. We show that NUP98 is essential for mouse gastrulation, a developmental stage that is associated with rapid cell proliferation, but dispensable for basal cell growth. NUP98−/− cells had an intact nuclear envelope with a normal number of embedded nuclear pore complexes. Typically, NUP98-deficient cells contained on average approximately 5-fold more cytoplasmic annulate lamellae than control cells. We found that a set of cytoplasmically oriented nucleoporins, including NUP358, NUP214, NUP88, and p62, assembled inefficiently into nuclear pores of NUP98−/− cells. Instead, these nucleoporins were prominently associated with the annulate lamellae. By contrast, a group of nucleoplasmically oriented nucleoporins, including NUP153, NUP50, NUP96, and NUP93, had no affinity for annulate lamellae and assembled normally into nuclear pores. Mutant pores were significantly impaired in transport receptor-mediated docking of proteins with a nuclear localization signal or M9 import signal and showed weak nuclear import of such substrates. In contrast, the ability of mutant pores to import ribosomal protein L23a and spliceosome protein U1A appeared intact. These observations show that NUP98 disruption selectively impairs discrete protein import pathways and support the idea that transport of distinct import complexes through the nuclear pore complex is mediated by specific subsets of nucleoporins.
Resumo:
In an RNA world, RNAs would have regulated traffic through normally impermeable bilayer membranes. Using selection-amplification we previously found RNAs that bind stably and increase the ionic conductance of phospholipid membranes at high Mg2+ and Ca2+ concentrations. Now selection in reduced divalents yields RNAs that bind phosphatidylcholine liposomes under conditions closer to physiological. Such affinity for phospholipid membranes requires interactions between RNAs. In fact, we detected no functional monomeric membrane-binding RNAs. A membrane-active end-to-end heterotrimer consisting of 2 RNA 9 and 1 RNA 10 is defined by nucleotide protection, oligonucleotide competition, and mutant analysis. Oligomers of the heterotrimer bind stably, cause release of liposome-encapsulated solutes, and disrupt model black membranes. Individual RNA molecules do not show any of these activities. This novel mechanism of RNA binding to lipid membranes may not only regulate membrane permeability, but suggests that arrays of catalytic or structural RNAs on membranes are plausible. Finally, a selection met only by RNA complexes evokes new possibilities for selection-amplification itself.
Resumo:
DAX-1 [dosage-sensitive sex reversal, adrenal hypoplasia congenita (AHC) critical region on the X chromosome, gene 1] is an orphan nuclear receptor that represses transcription by steroidogenic factor-1 (SF-1), a factor that regulates expression of multiple steroidogenic enzymes and other genes involved in reproduction. Mutations in the human DAX1 gene (also known as AHC) cause the X-linked syndrome AHC, a disorder that is associated with hypogonadotropic hypogonadism also. Characterization of Dax1-deficient male mice revealed primary testicular defects that included Leydig cell hyperplasia (LCH) and progressive degeneration of the germinal epithelium, leading to infertility. In this study, we investigated the effect of Dax1 disruption on the expression profile of various steroidogenic enzyme genes in Leydig cells isolated from Dax1-deficient male mice. Expression of the aromatase (Cyp19) gene, which encodes the enzyme that converts testosterone to estradiol, was increased significantly in the Leydig cells isolated from mutant mice, whereas the expression of other proteins (e.g., StAR and Cyp11a) was not altered. In in vitro transfection studies, DAX-1 repressed the SF-1-mediated transactivation of the Cyp19 promoter but did not inhibit the StAR or Cyp11a promoters. Elevated Cyp19 expression was accompanied by increased intratesticular levels of estradiol. Administration of tamoxifen, a selective estrogen-receptor modulator, restored fertility to the Dax1-deficient male mice and partially corrected LCH, suggesting that estrogen excess contributes to LCH and infertility. Based on these in vivo and in vitro analyses, aromatase seems to be a physiologic target of Dax-1 in Leydig cells, and increased Cyp19 expression may account, in part, for the infertility and LCH in Dax1-deficient mice.
Resumo:
We have created a strain of Dictyostelium that is deficient for the Ca2+/calmodulin-independent MLCK-A. This strain undergoes cytokinesis less efficiently than wild type, which results in an increased frequency of multinucleate cells when grown in suspension. The MLCK-A-cells are able, however, to undergo development and to cap crosslinked surface receptors, processes that require myosin heavy chain. Phosphorylated regulatory light chain (RLC) is still present in MLCK-A-cells, indicating that Dictyostelium has one or more additional protein kinases capable of phosphorylating RLC. Concanavalin A treatment was found to induce phosphorylation of essentially all of the RLC in wild-type cells, but RLC phosphorylation levels in MLCK-A-cells are unaffected by concanavalin A. Thus MLCK-A is regulated separately from the other MLCK(s) in the cell.
Resumo:
In higher plants, dominant mitochondrial mutations are associated with pollen sterility. This phenomenon is known as cytoplasmic male sterility (CMS). It is thought that the disruption in pollen development is a consequence of mitochondrial dysfunction. To provide definitive evidence that expression of an abnormal mitochondrial gene can interrupt pollen development, a CMS-associated mitochondrial DNA sequence from common bean, orf239, was introduced into the tobacco nuclear genome. Several transformants containing the orf239 gene constructs, with or without a mitochondrial targeting sequence, exhibited a semi sterile or male-sterile phenotype. Expression of the gene fusions in transformed anthers was confirmed using RNA gel blotting, ELISA, and light and electron microscopic immunocytochemistry. Immunocytological analysis showed that the ORF239 protein could associate with the cell wall of aberrant developing microspores. This pattern of extracellular localization was earlier observed in the CMS common bean line containing orf239 in the mitochondrial genome. Results presented here demonstrate that ORF239 causes pollen disruption in transgenic tobacco plants and may do so without targeting of the protein to the mitochondrion.
Resumo:
Although cyclin-dependent kinase 5 (Cdk5) is closely related to other cyclin-dependent kinases, its kinase activity is detected only in the postmitotic neurons. Cdk5 expression and kinase activity are correlated with the extent of differentiation of neuronal cells in developing brain. Cdk5 purified from nervous tissue phosphorylates neuronal cytoskeletal proteins including neurofilament proteins and microtubule-associated protein tau in vitro. These findings indicate that Cdk5 may have unique functions in neuronal cells, especially in the regulation of phosphorylation of cytoskeletal molecules. We report here generation of Cdk5(-/-) mice through gene targeting and their phenotypic analysis. Cdk5(-/-) mice exhibit unique lesions in the central nervous system associated with perinatal mortality. The brains of Cdk5(-/-) mice lack cortical laminar structure and cerebellar foliation. In addition, the large neurons in the brain stem and in the spinal cord show chromatolytic changes with accumulation of neurofilament immunoreactivity. These findings indicate that Cdk5 is an important molecule for brain development and neuronal differentiation and also suggest that Cdk5 may play critical roles in neuronal cytoskeleton structure and organization.
Resumo:
Chimeric mice in which lymphocytes are deficient in the Syk tyrosine kinase have been created. Compared with Syk-positive controls, mice with Syk -/- lymphocytes display substantial depletion of intraepithelial gamma delta T cells in the skin and gut, with developmental arrest occurring after antigen receptor gene rearrangement. In this dependence on Syk, subsets of intraepithelial gamma delta T cells are similar to B cells, but distinct from splenic gamma delta T cells that develop and expand in Syk-deficient mice. The characteristic associations of certain T-cell receptor V gamma/V delta gene rearrangements with specific epithelia are also disrupted by Syk deficiency.
Resumo:
Mucopolysaccharidosis VI (MPS VI) is a lysosomal storage disease with autosomal recessive inheritance caused by a deficiency of the enzyme arylsulfatase B (ASB), which is involved in degradation of dermatan sulfate and chondroitin 4-sulfate. A MPS VI mouse model was generated by targeted disruption of the ASB gene. Homozygous mutant animals exhibit ASB enzyme deficiency and elevated urinary secretion of dermatan sulfate. They develop progressive symptoms resembling those of MPS VI in humans. Around 4 weeks of age facial dysmorphia becomes overt, long bones are shortened, and pelvic and costal abnormalities are observed. Major alterations in bone formation with perturbed cartilaginous tissues in newborns and widened, perturbed, and persisting growth plates in adult animals are seen. All major parenchymal organs show storage of glycosaminoglycans preferentially in interstitial cells and macrophages. Affected mice are fertile and mortality is not elevated up to 15 months of age. This mouse model will be a valuable tool for studying pathogenesis of MPS VI and may help to evaluate therapeutical approaches for lysosomal storage diseases.
Resumo:
At least three distinct beta-adrenergic receptor (beta-AR) subtypes exist in mammals. These receptors modulate a wide variety of processes, from development and behavior, to cardiac function, metabolism, and smooth muscle tone. To understand the roles that individual beta-AR subtypes play in these processes, we have used the technique of gene targeting to create homozygous beta 1-AR null mutants (beta 1-AR -/-) in mice. The majority of beta 1-AR -/- mice die prenatally, and the penetrance of lethality shows strain dependence. Beta l-AR -/- mice that do survive to adulthood appear normal, but lack the chronotropic and inotropic responses seen in wild-type mice when beta-AR agonists such as isoproterenol are administered. Moreover, this lack of responsiveness is accompanied by markedly reduced stimulation of adenylate cyclase in cardiac membranes from beta 1-AR -/- mice. These findings occur despite persistent cardiac beta 2-AR expression, demonstrating the importance of beta 1-ARs for proper mouse development and cardiac function, while highlighting functional differences between beta-AR subtypes.