62 resultados para Digestive enzymes.
Resumo:
We have systematically characterized gene expression patterns in 49 adult and embryonic mouse tissues by using cDNA microarrays with 18,816 mouse cDNAs. Cluster analysis defined sets of genes that were expressed ubiquitously or in similar groups of tissues such as digestive organs and muscle. Clustering of expression profiles was observed in embryonic brain, postnatal cerebellum, and adult olfactory bulb, reflecting similarities in neurogenesis and remodeling. Finally, clustering genes coding for known enzymes into 78 metabolic pathways revealed a surprising coordination of expression within each pathway among different tissues. On the other hand, a more detailed examination of glycolysis revealed tissue-specific differences in profiles of key regulatory enzymes. Thus, by surveying global gene expression by using microarrays with a large number of elements, we provide insights into the commonality and diversity of pathways responsible for the development and maintenance of the mammalian body plan.
Resumo:
Induction of phase 2 enzymes and elevations of glutathione are major and sufficient strategies for protecting mammals and their cells against the toxic and carcinogenic effects of electrophiles and reactive forms of oxygen. Inducers belong to nine chemical classes and have few common properties except for their ability to modify sulfhydryl groups by oxidation, reduction, or alkylation. Much evidence suggests that the cellular “sensor” molecule that recognizes the inducers and signals the enhanced transcription of phase 2 genes does so by virtue of unique and highly reactive sulfhydryl functions that recognize and covalently react with the inducers. Benzylidene-alkanones and -cycloalkanones are Michael reaction acceptors whose inducer potency is profoundly increased by the presence of ortho- (but not other) hydroxyl substituent(s) on the aromatic ring(s). This enhancement correlates with more rapid reactivity of the ortho-hydroxylated derivatives with model sulfhydryl compounds. Proton NMR spectroscopy provides no evidence for increased electrophilicity of the β-vinyl carbons (the presumed site of nucleophilic attack) on the hydroxylated inducers. Surprisingly, these ortho-hydroxyl groups display a propensity for extensive intermolecular hydrogen bond formation, which may raise the reactivity and facilitate addition of mercaptans, thereby raising inducer potencies.
Resumo:
Objective: To examine the relation between different types of alcoholic drinks and upper digestive tract cancers (oropharyngeal and oesophageal).
Resumo:
Photosynthetic and metabolic acclimation to low growth temperatures were studied in Arabidopsis (Heynh.). Plants were grown at 23°C and then shifted to 5°C. We compared the leaves shifted to 5°C for 10 d and the new leaves developed at 5°C with the control leaves on plants that had been left at 23°C. Leaf development at 5°C resulted in the recovery of photosynthesis to rates comparable with those achieved by control leaves at 23°C. There was a shift in the partitioning of carbon from starch and toward sucrose (Suc) in leaves that developed at 5°C. The recovery of photosynthetic capacity and the redirection of carbon to Suc in these leaves were associated with coordinated increases in the activity of several Calvin-cycle enzymes, even larger increases in the activity of key enzymes for Suc biosynthesis, and an increase in the phosphate available for metabolism. Development of leaves at 5°C also led to an increase in cytoplasmic volume and a decrease in vacuolar volume, which may provide an important mechanism for increasing the enzymes and metabolites in cold-acclimated leaves. Understanding the mechanisms underlying such structural changes during leaf development in the cold could result in novel approaches to increasing plant yield.
Resumo:
Betaine lipids are ether-linked, nonphosphorous glycerolipids that resemble the more commonly known phosphatidylcholine in overall structure. Betaine lipids are abundant in many eukaryotes such as nonseed plants, algae, fungi, and amoeba. Some of these organisms are entirely devoid of phosphatidylcholine and, instead, contain a betaine lipid such as diacylglyceryl-O-4′-(N,N,N,-trimethyl)homoserine. Recently, this lipid also was discovered in the photosynthetic purple bacterium Rhodobacter sphaeroides where it seems to replace phosphatidylcholine under phosphate-limiting growth conditions. This discovery provided the opportunity to study the biosynthesis of betaine lipids in a bacterial model system. Mutants of R. sphaeroides deficient in the biosynthesis of the betaine lipid were isolated, and two genes essential for this process, btaA and btaB, were identified. It is proposed that btaA encodes an S-adenosylmethionine:diacylglycerol 3-amino-3-carboxypropyl transferase and btaB an S-adenosylmethionine-dependent N-methyltransferase. Both enzymatic activities can account for all reactions of betaine lipid head group biosynthesis. Because the equivalent reactions have been proposed for different eukaryotes, it seems likely that orthologs of btaA/btaB may be present in other betaine lipid-containing organisms.
Resumo:
The structure and function of Erwinia chrysanthemi pectate lysase C, a plant virulence factor, is reviewed to illustrate one mechanism of pathogenesis at the molecular level. Current investigative topics are discussed in this paper.
Resumo:
Today’s knowledge is based on yesterday’s research, which, for me, started some 60 years ago. In the introduction to this colloquium, the past history of proteolytic enzymes is briefly reviewed against the background of simultaneously developing concepts and methodologies in protein chemistry. This history is followed by a sketch of more recent developments of the role of proteolytic enzymes in physiological regulation and an outlook of future trends apparent from current research.
Resumo:
Two distinct types of debranching enzymes have been identified in developing pea (Pisum sativum L.) embryos using native gel analysis and tests of substrate preference on purified or partially purified activities. An isoamylase-like activity capable of hydrolyzing amylopectin and glycogen but not pullulan is present throughout development and is largely or entirely confined to the plastid. Activities capable of hydrolyzing pullulan are present both inside and outside of the plastid, and extraplastidial activity increases relative to the plastidial activity during development. Both types of debranching enzyme are also present in germinating embryos. We argue that debranching enzymes are likely to have a role in starch metabolism in the plastid of the developing embryo and in starch degradation during germination.
Resumo:
The sbeIIa and sbeIIb genes, encoding starch-branching enzyme (SBE) IIa and SBEIIb in barley (Hordeum vulgare L.), have been isolated. The 5′ portions of the two genes are strongly divergent, primarily due to the 2064-nucleotide-long intron 2 in sbeIIb. The sequence of this intron shows that it contains a retro-transposon-like element. Expression of sbeIIb but not sbeIIa was found to be endosperm specific. The temporal expression patterns for sbeIIa and sbeIIb were similar and peaked around 12 d after pollination. DNA gel-blot analysis demonstrated that sbeIIa and sbeIIb are both single-copy genes in the barley genome. By fluorescence in situ hybridization, the sbeIIa and sbeIIb genes were mapped to chromosomes 2 and 5, respectively. The cDNA clones for SBEIIa and SBEIIb were isolated and sequenced. The amino acid sequences of SBEIIa and SBEIIb were almost 80% identical. The major structural difference between the two enzymes was the presence of a 94-amino acid N-terminal extension in the SBEIIb precursor. The (β/α)8-barrel topology of the α-amylase superfamily and the catalytic residues implicated in branching enzymes are conserved in both barley enzymes.
Resumo:
In the developing endosperm of monocotyledonous plants, starch granules are synthesized and deposited within the amyloplast. A soluble stromal fraction was isolated from amyloplasts of immature maize (Zea mays L.) endosperm and analyzed for enzyme activities and polypeptide content. Specific activities of starch synthase and starch-branching enzyme (SBE), but not the cytosolic marker alcohol dehydrogenase, were strongly enhanced in soluble amyloplast stromal fractions relative to soluble extracts obtained from homogenized kernels or endosperms. Immunoblot analysis demonstrated that starch synthase I, SBEIIb, and sugary1, the putative starch-debranching enzyme, were each highly enriched in the amyloplast stroma, providing direct evidence for the localization of starch-biosynthetic enzymes within this compartment. Analysis of maize mutants shows the deficiency of the 85-kD SBEIIb polypeptide in the stroma of amylose extender cultivars and that the dull mutant lacks a >220-kD stromal polypeptide. The stromal fraction is distinguished by differential enrichment of a characteristic group of previously undocumented polypeptides. N-terminal sequence analysis revealed that an abundant 81-kD stromal polypeptide is a member of the Hsp70 family of stress-related proteins. Moreover, the 81-kD stromal polypeptide is strongly recognized by antibodies specific for an Hsp70 of the chloroplast stroma. These findings are discussed in light of implications for the correct folding and assembly of soluble, partially soluble, and granule-bound starch-biosynthetic enzymes during import into the amyloplast.
Resumo:
Amino acid analysis of internal sequences of purified NADH-hexacyanoferrate(III) oxidoreductase (NFORase), obtained from highly purified plasma membranes (PM) of spinach (Spinacia oleracea L.) leaves, showed 90 to 100% homology to internal amino acid sequences of monodehydroascorbate (MDA) reductases (EC 1.6.5.4) from three different plant species. Specificity, kinetics, inhibitor sensitivity, and cross-reactivity with anti-MDA reductase antibodies were all consistent with this identification. The right-side-out PM vesicles were subjected to consecutive salt washing and detergent (polyoxyethylene 20 dodecylether and 3-[(3-cholamido-propyl)-dimethylammonio]-1-propane sulfonate [CHAPS]) treatments, and the fractions were analyzed for NFORase and MDA reductase activities. Similar results were obtained when the 300 mm sucrose in the homogenization buffer and in all steps of the salt-washing and detergent treatments had been replaced by 150 mm KCl to mimic the conditions in the cytoplasm. We conclude that (a) MDA reductase is strongly associated with the inner (cytoplasmic) surface of the PM under in vivo conditions and requires washing with 1.0 m KCl or CHAPS treatment for removal, (b) the PM-bound MDA reductase activity is responsible for the majority of PM NFORase activity, and (c) there is another redox enzyme(s) in the spinach leaf PM that cannot be released from the PM by salt-washing and/or CHAPS treatment. The PM-associated MDA reductase may have a role in reduction of ascorbate in both the cytosol and the apoplast.