33 resultados para Diallel crosses
Resumo:
The products of the recB and recC genes are necessary for conjugal recombination and for repair of chromosomal double-chain breaks in Escherichia coli. The recD gene product combines with the RecB and RecC proteins to comprise RecBCD enzyme but is required for neither recombination nor repair. On the contrary, RecBCD enzyme is an exonuclease that inhibits recombination by destroying linear DNA. The RecD ejection model proposes that RecBCD enzyme enters a DNA duplex at a double-chain end and travels destructively until it encounters the recombination hot spot sequence chi. Chi then alters the RecBCD enzyme by weakening the affinity of the RecD subunit for the RecBC heterodimer. With the loss of the RecD subunit, the resulting protein, RecBC(D-), becomes deficient for exonuclease activity and proficient as a recombinagenic helicase. To test the model, genetic crosses between lambda phage were conducted in cells containing chi on a nonhomologous plasmid. Upon delivering a double-chain break to the plasmid, lambda recombined as if the cells had become recD mutants. The ability of chi to alter lambda recombination in trans was reversed by overproducing the RecD subunit. These results indicate that chi can influence a recombination act without directly participating in it.
Resumo:
The RecBCD enzyme of Escherichia coli promotes recombination preferentially at chi nucleotide sequences and has in vivo helicase and strong duplex DNA exonuclease (exoV) activities. The enzyme without the RecD subunit, as in a recD null mutant, promotes recombination efficiently but independently of chi and has no nucleolytic activity. Employing phage lambda red gam crosses, phage T4 2- survival measurements, and exoV assays, it is shown that E. coli cells in which RecBCD has extensive opportunity to interact with linear chi-containing DNA (produced by rolling circle replication of a plasmid with chi or by bleomycin-induced fragmentation of the cellular chromosome) acquire the phenotype of a recD mutant and maintain this for approximately 2 h. It is concluded that RecBCD is converted into RecBC during interaction with chi by irreversible inactivation of RecD. After conversion, the enzyme is released and initiates recombination on other DNA molecules in a chi-independent fashion. Overexpression of recD+ (from a plasmid) prevented the phenotypic change and providing RecD after the change restored chi-stimulated recombination. The observed recA+ dependence of the downregulation of exoV could explain the previously noted "reckless" DNA degradation of recA mutants. It is proposed that chi sites are regulatory elements for the RecBCD to RecBC switch and thereby function as cis- and trans-acting stimulators of RecBC-dependent recombination.
Resumo:
Maternally inherited bacteria of the genus Wolbachia are responsible for the early death of embryos in crosses between uninfected females and infected males in several insect species. This phenomenon, known as cytoplasmic incompatibility, also occurs between strains infected by different symbionts in some species, including Drosophila simulans. Wolbachia was found in two species closely related to D. simulans, Drosophila mauritiana, and Drosophila sechellia, and shown to cause incompatibility in the latter species but not in D. mauritiana. Comparison of bacterial and mtDNA history clarifies the origins of bacterial and incompatibility polymorphisms in D. simulans. Infection in D. mauritiana is probably the result of introgression of an infected D. simulans cytoplasm. Some D. simulans and D. sechellia cytoplasmic lineages harbor two bacteria as a consequence of a double infection which probably occurred in a common ancestor. The descendant symbionts in each species are associated with similar incompatibility relationships, which suggests that little variation of incompatibility types has occurred within maternal lineages beyond that related to the density of symbionts in their hosts.