72 resultados para Developmental Neuroscience


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that when telencephalic neural progenitors are briefly exposed to bone morphogenetic protein 2 (BMP2) in culture, their developmental fate is changed from neuronal cells to astrocytic cells. BMP2 significantly reduced the number of cells expressing microtubule-associated protein 2, a neuronal marker, and cells expressing nestin, a marker for undifferentiated neural precursors, but BMP2 increased the number of cells expressing S100-β, an astrocytic marker. In telencephalic neuroepithelial cells, BMP2 up-regulated the expression of negative helix–loop–helix (HLH) factors Id1, Id3, and Hes-5 (where Hes is homologue of hairy and Enhancer of Split) that inhibited the transcriptional activity of neurogenic HLH transcription factors Mash1 and neurogenin. Ectopic expression of either Id1 or Id3 (where Id is inhibitor of differentiation) inhibited neurogenesis of neuroepithelial cells, suggesting an important role for these HLH proteins in the BMP2-mediated changes in the neurogenic fate of these cells. Because gliogenesis in the brain and spinal cord, derived from implanted neural stem cells or induced by injury, is responsible for much of the failure of neuronal regeneration, this work may lead to a therapeutic strategy to minimize this problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microglia arise from CD45+ bone marrow precursors that colonize the fetal brain and play a key role in central nervous system inflammatory conditions. We report that parenchymal microglia are uncommitted myeloid progenitors of immature dendritic cells and macrophages by several criteria, including surface expression of “empty” class II MHC protein and their cysteine protease (cathepsin) profile. Microglia express receptors for stem cell factor and can be skewed toward more dendritic cell or macrophage-like profiles in response to the lineage growth factors granulocyte/macrophage colony-stimulating factor or macrophage colony-stimulating factor. Thus, in contrast to other organs, where terminally differentiated populations of resident dendritic cells and/or macrophages outnumber colonizing precursors, the majority of microglia within the brain remain in an undifferentiated state.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Memory illusions and distortions have long been of interest to psychology researchers studying memory, but neuropsychologists and neuroscientists have paid relatively little attention to them. This article attempts to lay the foundation for a cognitive neuroscience analysis of memory illusions and distortions by reviewing relevant evidence from a patient with a right frontal lobe lesion, patients with amnesia produced by damage to the medial temporal lobes, normal aging, and healthy young volunteers studied with functional neuroimaging techniques. Particular attention is paid to the contrasting roles of prefrontal cortex and medial temporal lobe structures in accurate and illusory remembering. Converging evidence suggests that the study of illusory memories can provide a useful tool for delineating the brain processes and systems involved in constructive aspects of remembering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How do the actions of individual genes contribute to the complex morphologies of animals and plants? How widespread are these genes taxonomically? How many genes are involved in the morphological differences observed between species, and can we identify them? To what extent can empirical data and theory be reconciled? We provide an overview of some recent attempts to answer these questions, answers that have taken us to the threshold of understanding the mechanistic basis and evolutionary factors that underlie morphological innovation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reviews some recent trends in imaging neuroscience. A distinction is made between making maps of functional responses in the brain and discerning the rules or principles that underlie their organization. After considering developments in the characterization of brain imaging data, several examples are presented that highlight the context-sensitive nature of neuronal responses that we measure. These contexts can be endogenous and physiological, reflecting the fact that each cortical area, or neuronal population, expresses its dynamics in the context of interactions with other areas. Conversely, these contexts can be experimental or psychological and can have a profound effect on the regional effects elicited. In this review we consider experimental designs and analytic strategies that go beyond cognitive subtraction and speculate on how functional imaging can be used to address both the details and principles underlying functional integration and specialization in the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression patterns of developmental genes provide new markers that address the homology of body parts and provide clues as to how body plans have evolved. Such markers support the idea that insect wings evolved from limbs but refute the idea that insect and crustacean jaws are fundamentally different in structure. They also confirm that arthropod tagmosis reflects underlying patterns of Hox gene regulation but they do not yet resolve to what extent Hox expression domains may serve to define segment homologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hearing underlies our ability to locate sound sources in the environment, our appreciation of music, and our ability to communicate. Participants in the National Academy of Sciences colloquium on Auditory Neuroscience: Development, Transduction, and Integration presented research results bearing on four key issues in auditory research. How does the complex inner ear develop? How does the cochlea transduce sounds into electrical signals? How does the brain's ability to compute the location of a sound source develop? How does the forebrain analyze complex sounds, particularly species-specific communications? This article provides an introduction to the papers stemming from the meeting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular anatomy and expression of glycine decarboxylase (GDC) protein were studied during leaf development of the C3-C4 intermediate species Moricandia arvensis. Leaf anatomy was initially C3-like and the number and profile area of mitochondria in the bundle-sheath cells were the same as those in adjacent mesophyll cells. Between a leaf length of 6 and 12 mm there was a bundle-sheath-specific, 4-fold increase in the number of mitochondrial profiles, followed by a doubling of their individual profile areas as the leaves expanded further. Subunits of GDC were present in whole-leaf extracts before the anatomical development of bundle-sheath cells. Whereas the GDC H-protein content of leaves increased steadily throughout development, the increase in GDC P-protein was synchronous with the development of mitochondria in the bundle sheath. The P-protein was confined to bundle-sheath mitochondria throughout leaf development, and its content in individual mitochondria increased before the anatomical development of the bundle sheath. Anatomical and biochemical attributes of the C3-C4 character were present in the cotyledons and sepals but not in other photosynthetic organs/tissues. In leaves and cotyledons that developed in the dark, the expression of the P-protein and the organellar development were reduced but the bundle-sheath cell specificity was retained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodesmata mediate direct cell-to-cell communication in plants. One of their significant features is that primary plasmodesmata formed at the time of cytokinesis often undergo structural modifications, by the de novo addition of cytoplasmic strands across cell walls, to become complex secondary plasmodesmata during plant development. Whether such modifications allow plasmodesmata to gain special transport functions has been an outstanding issue in plant biology. Here we present data showing that the cucumber mosaic virus 3a movement protein (MP):green fluorescent protein (GFP) fusion was not targeted to primary plasmodesmata in the epidermis of young or mature leaves in transgenic tobacco (Nicotiana tabacum) plants constitutively expressing the 3a:GFP fusion gene. Furthermore, the cucumber mosaic virus 3a MP:GFP fusion protein produced in planta by biolistic bombardment of the 3a:GFP fusion gene did not traffic between cells interconnected by primary plasmodesmata in the epidermis of a young leaf. In contrast, the 3a MP:GFP was targeted to complex secondary plasmodesmata and trafficked from cell to cell when a leaf reached a certain developmental stage. These data provide the first experimental evidence, to our knowledge, that primary and complex secondary plasmodesmata have different protein-trafficking functions and suggest that complex secondary plasmodesmata may be formed to traffic specific macromolecules that are important for certain stages of leaf development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression of desacetoxyvindoline 4-hydroxylase (D4H), which catalyzes the second to the last reaction in vindoline biosynthesis in Catharanthus roseus, appears to be under complex, multilevel developmental and light regulation. Developmental studies with etiolated and light-treated seedlings suggested that although light had variable effects on the levels of d4h transcripts, those of D4H protein and enzyme activity could be increased, depending on seedling development, up to 9- and 8-fold, respectively, compared with etiolated seedlings. However, light treatment of etiolated seedlings could stop and reverse the decline of d4h transcripts at later stages of seedling development. Repeated exposure of seedlings to light was also required to maintain the full spectrum of enzyme activity observed during seedling development. Further studies showed that a photoreversible phytochrome appeared to be involved in the activation of D4H, since red-light treatment of etiolated seedlings increased the detectable levels of d4h transcripts, D4H protein, and D4H enzyme activity, whereas far-red-light treatment completely reversed this process. Additional studies also confirmed that different major isoforms of D4H protein exist in etiolated (isoelectric point, 4.7) and light-grown (isoelectric point, 4.6) seedlings, suggesting that a component of the light-mediated activation of D4H may involve an undetermined posttranslational modification. The biological reasons for this complex control of vindoline biosynthesis may be related to the need to produce structures that could sequester away from cellular activities the cytotoxic vinblastine and vincristine dimers that are derived partially from vindoline.