36 resultados para Delay in Diagnosis
Resumo:
Cyclophilin A (CyPA) is specifically incorporated into the virions of HIV-1 and has been shown to enhance significantly an early step of cellular HIV-1 infection. Our preliminary studies implicated CD147 as a receptor for extracellular CyPA. Here, we demonstrate a role for CyPA–CD147 interaction during the early steps of HIV-1 infection. Expression of human CD147 increased infection by HIV-1 under one-cycle conditions. However, susceptibility to infection by viruses lacking CyPA (simian immunodeficiency virus or HIV-1 produced in the presence of cyclosporin A) was unaffected by CD147. Virus-associated CyPA coimmunoprecipitated with CD147 from infected cells. Antibody to CD147 inhibited HIV-1 entry as evidenced by the delay in translocation of the HIV-1 core proteins from the membrane and inhibition of viral reverse transcription. Viruses whose replication did not require CyPA (SIV or mutant HIV-1) were resistant to the inhibitory effect of anti-CD147 antibody. These results suggest that HIV-1 entry depends on an interaction between virus-associated CyPA and CD147 on a target cell.
Resumo:
Plants exposed to repetitive touch or wind are generally shorter and stockier than sheltered plants. These mechanostimulus-induced developmental changes are termed thigmomorphogenesis and may confer resistance to subsequent stresses. An early response of Arabidopsis thaliana to touch or wind is the up-regulation of TCH (touch) gene expression. The signal transduction pathway that leads to mechanostimulus responses is not well defined. A role for ethylene has been proposed based on the observation that mechanostimulation of plants leads to ethylene evolution and exogenous ethylene leads to thigmomorphogenetic-like changes. To determine whether ethylene has a role in plant responses to mechanostimulation, we assessed the ability of two ethylene-insensitive mutants, etr1–3 and ein2–1, to undergo thigmomorphogenesis and TCH gene up-regulation of expression. The ethylene-insensitive mutants responded to wind similarly to the wild type, with a delay in flowering, decrease in inflorescence elongation rate, shorter mature primary inflorescences, more rosette paraclades, and appropriate TCH gene expression changes. Also, wild-type and mutant Arabidopsis responded to vibrational stimulation, with an increase in hypocotyl elongation and up-regulation of TCH gene expression. We conclude that the ETR1 and EIN2 protein functions are not required for the developmental and molecular responses to mechanical stimulation.
Resumo:
The observation that overt type I diabetes is often preceded by the appearance of insulin autoantibodies and the reports that prophylactic administration of insulin to biobreeding diabetes-prone (BB-DP) rats, nonobese diabetic (NOD) mice, and human subjects results in protection from diabetes suggest that an immune response to insulin is involved in the process of beta cell destruction. We have recently reported that islet-infiltrating cells isolated from NOD mice are enriched for insulin-specific T cells, that insulin-specific T cell clones are capable of adoptive transfer of diabetes, and that epitopes present on residues 9-23 of the B chain appear to be dominant in this spontaneous response. In the experiments described in this report, the epitope specificity of 312 independently isolated insulin-specific T cell clones was determined and B-(9-23) was found to be dominant, with 93% of the clones exhibiting specificity toward this peptide and the remainder to an epitope on residues 7-21 of the A chain. On the basis of these observations, the effect of either subcutaneous or intranasal administration of B-(9-23) on the incidence of diabetes in NOD mice was determined. The results presented here indicate that both subcutaneous and intranasal administration of B-(9-23) resulted in a marked delay in the onset and a decrease in the incidence of diabetes relative to mice given the control peptide, tetanus toxin-(830-843). This protective effect is associated with reduced T-cell proliferative response to B-(9-23) in B-(9-23)-treated mice.
Resumo:
Transcription of the late genes of simian virus 40 (SV40) is repressed during the early phase of the lytic cycle of infection of binding of cellular factors, called IBP-s, to the SV40 late promoter; repression is relieved after the onset of viral DNA replication by titration of these repressors. Preliminary data indicated that one of the major components of IBP-s was human estrogen-related receptor 1 (hERR1). We show here that several members of the steroid/thyroid hormone receptor superfamily, including testis receptor 2, thyroid receptor alpha 1 in combination with retinoid X receptor alpha, chicken ovalbumin upstream promoter transcription factors 1 and 2 (COUP-TF1 and COUP-TF2), as well as hERR1, possess the properties of IBP-s. These receptors bind specifically to hormone receptor binding sites present in the SV40 major late promoter. Recombinant COUP-TF1 specifically represses transcription from the SV40 major late promoter in a cell-free transcription system. Expression of COUP-TF1, COUP-TF2, or hERR1 in monkey cells results in repression of the SV40 late promoter, but not the early promoter, in the absence of the virally encoded large tumor antigen. Overexpression of COUP-TF1 leads to a delay in the early-to-late switch in SV40 gene expression during the lytic cycle of infection. Thus, members of this superfamily can play major direct roles in regulating expression of SV40. Possibly, natural or synthetic ligands to these receptors can serve as antiviral drugs. Our findings also provide the basis for the development of assays to screen for the ligands to testis receptor 2 and hERR1.
Resumo:
We have previously shown that protein phosphorylation plays an important role in the sorting and assembly of tight junctions. We have now examined in detail the role of protein kinases in intercellular junction biogenesis by using a combination of highly specific and broad-spectrum inhibitors that act by independent mechanisms. Our data indicate that protein kinase C (PKC) is required for the proper assembly of tight junctions. Low concentrations of the specific inhibitor of PKC, calphostin C, markedly inhibited development of transepithelial electrical resistance, a functional measure of tight-junction biogenesis. The effect of PKC inhibitors on the development of tight junctions, as measured by resistance, was paralleled by a delay in the sorting of the tight-junction protein, zona occludens 1 (ZO-1), to the tight junction. The assembly of desmosomes and the adherens junction were not detectably affected, as determined by immunocytochemical analysis. In addition, ZO-1 was phosphorylated subsequent to the initiation of cell-cell contact, and treatment with calphostin C prevented approximately 85% of the phosphorylation increase. Furthermore, in vitro measurements indicate that ZO-1 may be a direct target of PKC. Moreover, membrane-associated PKC activity more than doubled during junction assembly, and immunocytochemical analysis revealed a pool of PKC zeta that appeared to colocalize with ZO-1 at the tight junction. A preformed complex containing ZO-1, ZO-2, p130, as well as 330- and 65-kDa phosphoproteins was detected by coimmunoprecipitation in both the presence and absence of cell-cell contact. Identity of the 330- and 65-kDa phosphoproteins remains to be determined, but the 65-kDa protein may be occludin. The mass of this complex and the incorporation of ZO-1 into the Triton X-100-insoluble cytoskeleton were not PKC dependent.
Resumo:
The body musculature of higher vertebrates is composed of the epaxial muscles, associated with the vertebral column, and of the hypaxial muscles of the limbs and ventro-lateral body wall. Both sets of muscles arise from different cell populations within the dermomyotomal component of the somite. Myogenesis first occurs in the medial somitic cells that will form the epaxial muscles and starts with a significant delay in cells derived from the lateral somitic moiety that migrate to yield the hypaxial muscles. The newly formed somite is mostly composed of unspecified cells, and the determination of somitic compartments toward specific lineages is controlled by environmental cues. In this report, we show that determinant signals for lateral somite specification are provided by the lateral plate. They result in a blockade of the myogenic program, which maintains the lateral somitic cells as undifferentiated muscle progenitors expressing the Pax-3 gene, and represses the activation of the MyoD family genes. In vivo, this mechanism could account for the delay observed in the onset of myogenesis between muscles of the epaxial and hypaxial domains.