162 resultados para DNA directed DNA polymerase beta
Resumo:
Exposure to exogenous alkylating agents, particularly N-nitroso compounds, has been associated with increased incidence of primary human brain tumors, while intrinsic risk factors are currently unknown. The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) is a major defense against the carcinogenicity of N-nitroso compounds and other alkylators. We report here that in 55% (64/117) of cases, histologically normal brain tissue adjacent to primary human brain tumors lacked detectable MGMT activity [methyl excision repair-defective (Mer-) status]. The incidence of Mer- status in normal brain tissue from brain tumor patients was age-dependent, increasing from 21% in children 0.25-19 years of age to 75% in adults over 50. In contrast, Mer- status was found in 12% (5/43) of normal brain specimens from patients operated for conditions other than primary brain tumors and was not age-dependent. The 4.6-fold elevation in incidence of Mer- status in brain tumor patients is highly significant (chi2 = 24; p < or = 0.001). MGMT activity was independent of age in the lymphocytes of brain tumor patients and was present in lymphocytes from six of nine tumor patients whose normal brain specimen was Mer-. DNA polymerase beta, apurinic/apyrimidinic endonuclease, and lactate dehydrogenase activities were present in all specimens tested, including Mer- specimens from brain tumor patients. Our data are consistent with a model of carcinogenesis in human brain in which epigenetically regulated lack of MGMT is a predisposing factor and alkylation-related mutagenesis is a driving force.
Resumo:
DPB11, a gene that suppresses mutations in two essential subunits of Saccharomyces cerevisiae DNA polymerase II(epsilon) encoded by POL2 and DPB2, was isolated on a multicopy plasmid. The nucleotide sequence of the DPB11 gene revealed an open reading frame predicting an 87-kDa protein. This protein is homologous to the Schizosaccharomyces pombe rad4+/cut5+ gene product that has a cell cycle checkpoint function. Disruption of DPB11 is lethal, indicating that DPB11 is essential for cell proliferation. In thermosensitive dpb11-1 mutant cells, S-phase progression is defective at the nonpermissive temperature, followed by cell division with unequal chromosomal segregation accompanied by loss of viability.dpb11-1 is synthetic lethal with any one of the dpb2-1, pol2-11, and pol2-18 mutations at all temperatures. Moreover, dpb11 cells are sensitive to hydroxyurea, methyl methanesulfonate, and UV irradiation. These results strongly suggest that Dpb11 is a part of the DNA polymerase II complex during chromosomal DNA replication and also acts in a checkpoint pathway during the S phase of the cell cycle to sense stalled DNA replication.
Resumo:
The crystal structure of the large fragment of the Thermus aquaticus DNA polymerase (Klentaq1), determined at 2.5-A resolution, demonstrates a compact two-domain architecture. The C-terminal domain is identical in fold to the equivalent region of the Klenow fragment of Escherichia coli DNA polymerase I (Klenow pol I). Although the N-terminal domain of Klentaq1 differs greatly in sequence from its counterpart in Klenow pol I, it has clearly evolved from a common ancestor. The structure of Klentaq1 reveals the strategy utilized by this protein to maintain activity at high temperatures and provides the structural basis for future improvements of the enzyme.
Resumo:
The role of Escherichia coli DNA polymerase (Pol) II in producing or avoiding mutations was investigated by replacing the chromosomal Pol II gene (polB+) by a gene encoding an exonuclease-deficient mutant Pol II (polBex1). The polBex1 allele increased adaptive mutations on an episome in nondividing cells under lactose selection. The presence of a Pol III antimutator allele (dnaE915) reduced adaptive mutations in both polB+ cells and cells deleted for polB (polB delta 1) to below the wild-type level, suggesting that both Pol II and Pol III are synthesizing episomal DNA in nondividing cells but that in wild-type cells Pol III generates the adaptive mutations. The adaptive mutations were mainly -1 frame-shifts occurring in short homopolymeric runs and were similar in wild-type, polB delta 1, and polBex1 strains. Mutations produced by both Pol III and Pol II ex1 were corrected by the mutHLS mismatch repair system.
Resumo:
Bacteriophage T7 DNA polymerase efficiently incorporates a chain-terminating dideoxynucleotide into DNA, in contrast to the DNA polymerases from Escherichia coli and Thermus aquaticus. The molecular basis for this difference has been determined by constructing active site hybrids of these polymerases. A single hydroxyl group on the polypeptide chain is critical for selectivity. Replacing tyrosine-526 of T7 DNA polymerase with phenylalanine increases discrimination against the four dideoxynucleotides by > 2000-fold, while replacing the phenylalanine at the homologous position in E. coli DNA polymerase I (position 762) or T. aquaticus DNA polymerase (position 667) with tyrosine decreases discrimination against the four dideoxynucleotides 250- to 8000-fold. These mutations allow the engineering of new DNA polymerases with enhanced properties for use in DNA sequence analysis.
Resumo:
We describe compartmentalized self-replication (CSR), a strategy for the directed evolution of enzymes, especially polymerases. CSR is based on a simple feedback loop consisting of a polymerase that replicates only its own encoding gene. Compartmentalization serves to isolate individual self-replication reactions from each other. In such a system, adaptive gains directly (and proportionally) translate into genetic amplification of the encoding gene. CSR has applications in the evolution of polymerases with novel and useful properties. By using three cycles of CSR, we obtained variants of Taq DNA polymerase with 11-fold higher thermostability than the wild-type enzyme or with a >130-fold increased resistance to the potent inhibitor heparin. Insertion of an extra stage into the CSR cycle before the polymerase reaction allows its application to enzymes other than polymerases. We show that nucleoside diphosphate kinase and Taq polymerase can form such a cooperative CSR cycle based on reciprocal catalysis, whereby nucleoside diphosphate kinase produces the substrates required for the replication of its own gene. We also find that in CSR the polymerase genes themselves evolve toward more efficient replication. Thus, polymerase genes and their encoded polypeptides cooperate to maximize postselection copy number. CSR should prove useful for the directed evolution of enzymes, particularly DNA or RNA polymerases, as well as for the design and study of in vitro self-replicating systems mimicking prebiotic evolution and viral replication.
Resumo:
In addition to DNA polymerase complexes, DNA replication requires the coordinate action of a series of proteins, including regulators Cdc28/Clb and Dbf4/Cdc7 kinases, Orcs, Mcms, Cdc6, Cdc45, and Dpb11. Of these, Dpb11, an essential BRCT repeat protein, has remained particularly enigmatic. The Schizosaccharomyces pombe homolog of DPB11, cut5, has been implicated in the DNA replication checkpoint as has the POL2 gene with which DPB11 genetically interacts. Here we describe a gene, DRC1, isolated as a dosage suppressor of dpb11–1. DRC1 is an essential cell cycle-regulated gene required for DNA replication. We show that both Dpb11 and Drc1 are required for the S-phase checkpoint, including the proper activation of the Rad53 kinase in response to DNA damage and replication blocks. Dpb11 is the second BRCT-repeat protein shown to control Rad53 function, possibly indicating a general function for this class of proteins. DRC1 and DPB11 show synthetic lethality and reciprocal dosage suppression. The Drc1 and Dpb11 proteins physically associate and function together to coordinate DNA replication and the cell cycle.
Resumo:
Translesion synthesis at replication-blocking lesions requires the induction of proteins that are controlled by the SOS system in Escherichia coli. Of the proteins identified so far, UmuD′, UmuC, and RecA* were shown to facilitate replication across UV-light-induced lesions, yielding both error-free and mutagenic translesion-synthesis products. Similar to UV lesions, N-2-acetylaminofluorene (AAF), a chemical carcinogen that forms covalent adducts at the C8 position of guanine residues, is a strong replication-blocking lesion. Frameshift mutations are induced efficiently by AAF adducts when located within short repetitive sequences in a two-step mechanism; AAF adducts incorporate a cytosine across from the lesion and then form a primer-template misaligned intermediate that, upon elongation, yields frameshift mutations. Recently, we have shown that although elongation from the nonslipped intermediate depends on functional umuDC+ gene products, elongation from the slipped intermediate is umuDC+-independent but requires another, as yet biochemically uncharacterized, SOS function. We now show that in DNA Polymerase III-proofreading mutant strains (dnaQ49 and mutD5 strains), elongation from the slipped intermediate is highly efficient in the absence of SOS induction—in contrast to elongation from the nonslipped intermediate, which still requires UmuDC functions.
Resumo:
The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. γ is two-thirds the size of τ and shares virtually all its amino acid sequence with τ. E. coli and T. thermophilus have evolved very different mechanisms for setting the approximate 1:1 ratio between τ and γ. Both mechanisms put ribosomes into alternate reading frames so that stop codons in the new frame serve to make the smaller γ protein. In E. coli, ≈50% of initiating ribosomes translate the dnaX mRNA conventionally to give τ, but the other 50% shift into the −1 reading frame at a specific site (A AAA AAG) in the mRNA to produce γ. In T. thermophilus ribosomal frameshifting is not required: the dnaX mRNA is a heterogeneous population of molecules with different numbers of A residues arising from transcriptional slippage on a run of nine T residues in the DNA template. Translation of the subpopulation containing nine As (or +/− multiples of three As) yields τ. The rest of the population of mRNAs (containing nine +/− nonmultiples of three As) puts ribosomes into the alternate reading frames to produce the γ protein(s). It is surprising that two rather similar dnaX sequences in E. coli and T. thermophilus lead to very different mechanisms of expression.
Resumo:
We describe an adaptation of the rolling circle amplification (RCA) reporter system for the detection of protein Ags, termed “immunoRCA.” In immunoRCA, an oligonucleotide primer is covalently attached to an Ab; thus, in the presence of circular DNA, DNA polymerase, and nucleotides, amplification results in a long DNA molecule containing hundreds of copies of the circular DNA sequence that remain attached to the Ab and that can be detected in a variety of ways. Using immunoRCA, analytes were detected at sensitivities exceeding those of conventional enzyme immunoassays in ELISA and microparticle formats. The signal amplification afforded by immunoRCA also enabled immunoassays to be carried out in microspot and microarray formats with exquisite sensitivity. When Ags are present at concentrations down to fM levels, specifically bound Abs can be scored by counting discrete fluorescent signals arising from individual Ag–Ab complexes. Multiplex immunoRCA also was demonstrated by accurately quantifying Ags mixed in different ratios in a two-color, single-molecule-counting assay on a glass slide. ImmunoRCA thus combines high sensitivity and a very wide dynamic range with an unprecedented capability for single molecule detection. This Ag-detection method is of general applicability and is extendable to multiplexed immunoassays that employ a battery of different Abs, each labeled with a unique oligonucleotide primer, that can be discriminated by a color-coded visualization system. ImmunoRCA-profiling based on the simultaneous quantitation of multiple Ags should expand the power of immunoassays by exploiting the increased information content of ratio-based expression analysis.
Resumo:
Endonuclease III from Escherichia coli, yeast (yNtg1p and yNtg2p) and human and E.coli endonuclease VIII have a wide substrate specificity, and recognize oxidation products of both thymine and cytosine. DNA containing single dihydrouracil (DHU) and tandem DHU lesions were used as substrates for these repair enzymes. It was found that yNtg1p prefers DHU/G and exhibits much weaker enzymatic activity towards DNA containing a DHU/A pair. However, yNtg2p, E.coli and human endonuclease III and E.coli endonuclease VIII activities were much less sensitive to the base opposite the lesion. Although these enzymes efficiently recognize single DHU lesions, they have limited capacity for completely removing this damaged base when DHU is present on duplex DNA as a tandem pair. Both E.coli endonuclease III and yeast yNtg1p are able to remove only one DHU in DNA containing tandem lesions, leaving behind a single DHU at either the 3′- or 5′-terminus of the cleaved fragment. On the other hand, yeast yNtg2p can remove DHU remaining on the 5′-terminus of the 3′ cleaved fragment, but is unable to remove DHU remaining on the 3′-terminus of the cleaved 5′ fragment. In contrast, both human endonuclease III and E.coli endonuclease VIII can remove DHU remaining on the 3′-terminus of a cleaved 5′ fragment, but are unable to remove DHU remaining on the 5′-terminus of a cleaved 3′ fragment. Tandem lesions are known to be generated by ionizing radiation and agents that generate reactive oxygen species. The fact that these repair glycosylases have only a limited ability to remove the DHU remaining at the terminus suggests that participation of other repair enzymes is required for the complete removal of tandem lesions before repair synthesis can be efficiently performed by DNA polymerase.
Resumo:
Previously we have characterized type IB DNA topoisomerase V (topo V) in the hyperthermophile Methanopyrus kandleri. The enzyme has a powerful topoisomerase activity and is abundant in M. kandleri. Here we report two characterizations of topo V. First, we found that its N-terminal domain has sequence homology with both eukaryotic type IB topoisomerases and the integrase family of tyrosine recombinases. The C-terminal part of the sequence includes 12 repeats, each repeat consisting of two similar but distinct helix-hairpin-helix motifs; the same arrangement is seen in recombination protein RuvA and mammalian DNA polymerase β. Second, on the basis of sequence homology between topo V and polymerase β, we predict and demonstrate that topo V possesses apurinic/apyrimidinic (AP) site-processing activities that are important in base excision DNA repair: (i) it incises the phosphodiester backbone at the AP site, and (ii) at the AP endonuclease cleaved AP site, it removes the 5′ 2-deoxyribose 5-phosphate moiety so that a single-nucleotide gap with a 3′-hydroxyl and 5′-phosphate can be filled by a DNA polymerase. Topo V is thus the prototype for a new subfamily of type IB topoisomerases and is the first example of a topoisomerase with associated DNA repair activities.
Resumo:
Two important and timely questions with respect to DNA replication, DNA recombination, and DNA repair are: (i) what controls which DNA polymerase gains access to a particular primer-terminus, and (ii) what determines whether a DNA polymerase hands off its DNA substrate to either a different DNA polymerase or to a different protein(s) for the completion of the specific biological process? These questions have taken on added importance in light of the fact that the number of known template-dependent DNA polymerases in both eukaryotes and in prokaryotes has grown tremendously in the past two years. Most notably, the current list now includes a completely new family of enzymes that are capable of replicating imperfect DNA templates. This UmuC-DinB-Rad30-Rev1 superfamily of DNA polymerases has members in all three kingdoms of life. Members of this family have recently received a great deal of attention due to the roles they play in translesion DNA synthesis (TLS), the potentially mutagenic replication over DNA lesions that act as potent blocks to continued replication catalyzed by replicative DNA polymerases. Here, we have attempted to summarize our current understanding of the regulation of action of DNA polymerases with respect to their roles in DNA replication, TLS, DNA repair, DNA recombination, and cell cycle progression. In particular, we discuss these issues in the context of the Gram-negative bacterium, Escherichia coli, that contains a DNA polymerase (Pol V) known to participate in most, if not all, of these processes.
Resumo:
DNA polymerase V, composed of a heterotrimer of the DNA damage-inducible UmuC and UmuD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{^{\prime}}}}\end{equation*}\end{document} proteins, working in conjunction with RecA, single-stranded DNA (ssDNA)-binding protein (SSB), β sliding clamp, and γ clamp loading complex, are responsible for most SOS lesion-targeted mutations in Escherichia coli, by catalyzing translesion synthesis (TLS). DNA polymerase II, the product of the damage-inducible polB (dinA ) gene plays a pivotal role in replication-restart, a process that bypasses DNA damage in an error-free manner. Replication-restart takes place almost immediately after the DNA is damaged (≈2 min post-UV irradiation), whereas TLS occurs after pol V is induced ≈50 min later. We discuss recent data for pol V-catalyzed TLS and pol II-catalyzed replication-restart. Specific roles during TLS for pol V and each of its accessory factors have been recently determined. Although the precise molecular mechanism of pol II-dependent replication-restart remains to be elucidated, it has recently been shown to operate in conjunction with RecFOR and PriA proteins.
Resumo:
Recent experiments have measured the rate of replication of DNA catalyzed by a single enzyme moving along a stretched template strand. The dependence on tension was interpreted as evidence that T7 and related DNA polymerases convert two (n = 2) or more single-stranded template bases to double helix geometry in the polymerization site during each catalytic cycle. However, we find structural data on the T7 enzyme–template complex indicate n = 1. We also present a model for the “tuning” of replication rate by mechanical tension. This model considers only local interactions in the neighborhood of the enzyme, unlike previous models that use stretching curves for the entire polymer chain. Our results, with n = 1, reconcile force-dependent replication rate studies with structural data on DNA polymerase complexes.