165 resultados para Cytokine, Receptor, T cell, Asthma


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have identified a human cytomegalovirus cell-death suppressor, denoted vICA, encoded by the viral UL36 gene. vICA inhibits Fas-mediated apoptosis by binding to the pro-domain of caspase-8 and preventing its activation. vICA does not share significant sequence homology with FLIPs or other known suppressors of apoptosis, suggesting that this protein represents a new class of cell-death suppressors. Notably, resistance to Fas-mediated apoptosis is delayed in fibroblasts infected with viruses that encode mutant vICA, suggesting that vICA suppresses death-receptor-induced cell death in the context of viral infection. Although vICA is dispensable for viral replication in vitro, the common targeting of caspase-8 activation by diverse herpesviruses argues for an important role for this antiapoptotic mechanism in the pathogenesis of viral infection in the host, most likely in avoiding immune clearance by cytotoxic lymphocytes and natural killer cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutamate release activates multiple receptors that interact with each other and thus determine the response of the cell. Exploring these interactions is critical to developing an understanding of the functional consequences of synaptic transmission. Activation of metabotropic glutamate receptors (mGluRs) inhibits N-methyl-D-aspartate (NMDA)-evoked responses measured electrophysiologically in neostriatal slices. The present study examines the functional consequences of this regulation using infrared differential interference contrast videomicroscopy to measure and characterize glutamate receptor-induced cell swelling in a neostriatal brain slice preparation. This swelling is, in many cases, a prelude to necrotic cell death and the dye trypan blue was used to confirm that swelling can result in the death of neostriatal cells. Activation of mGluRs by the agonist 1-aminocyclopentane-1,3-dicarboxylic acid (tACPD) inhibited NMDA but not amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate-induced swelling. This regulation was cell-type specific as tACPD did not alter NMDA-induced swelling in pyramidal cells of the hippocampus. Importantly, these findings could be extended to in vivo preparations. Pretreatment with tACPD limited the size of lesions and associated behavioral deficits induced by intrastriatal administration of the NMDA receptor agonist quinolinic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pathogenic human parvovirus B19 is an autonomously replicating virus with a remarkable tropism for human erythroid progenitor cells. Although the target cell specificity for B19 infection has been suggested to be mediated by the erythrocyte P-antigen receptor (globoside), a number of nonerythroid cells that express this receptor are nonpermissive for B19 replication. To directly test the role of expression from the B19 promoter at map unit 6 (B19p6) in the erythroid cell specificity of B19, we constructed a recombinant adeno-associated virus 2 (AAV), in which the authentic AAV promoter at map unit 5 (AAVp5) was replaced by the B19p6 promoter. Although the wild-type (wt) AAV requires a helper virus for its optimal replication, we hypothesized that inserting the B19p6 promoter in a recombinant AAV would permit autonomous viral replication, but only in erythroid progenitor cells. In this report, we provide evidence that the B19p6 promoter is necessary and sufficient to impart autonomous replication competence and erythroid specificity to AAV in primary human hematopoietic progenitor cells. Thus, expression from the B19p6 promoter plays an important role in post-P-antigen receptor erythroid-cell specificity of parvovirus B19. The AAV-B19 hybrid vector system may also prove to be useful in potential gene therapy of human hemoglobinopathies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main physiological regulator of erythropoiesis is the hematopoietic growth factor erythropoietin (EPO), which is induced in response to hypoxia. Binding of EPO to the EPO receptor (EPO-R), a member of the cytokine receptor superfamily, controls the terminal maturation of red blood cells. So far, EPO has been reported to act mainly on erythroid precursor cells. However, we have detected mRNA encoding both EPO and EPO-R in mouse brain by reverse transcription-PCR. Exposure to 0.1% carbon monoxide, a procedure that causes functional anemia, resulted in a 20-fold increase of EPO mRNA in mouse brain as quantified by competitive reverse transcription-PCR, whereas the EPO-R mRNA level was not influenced by hypoxia. Binding studies on mouse brain sections revealed defined binding sites for radioiodinated EPO in distinct brain areas. The specificity of EPO binding was assessed by homologous competition with an excess of unlabeled EPO and by using two monoclonal antibodies against human EPO, one inhibitory and the other noninhibitory for binding of EPO to EPO-R. Major EPO binding sites were observed in the hippocampus, capsula interna, cortex, and midbrain areas. Functional expression of the EPO-R and hypoxic upregulation of EPO suggest a role of EPO in the brain.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) is a well characterized cytokine that appears to play a major role in directing the cellular response to injury, driving fibrogenesis, and, thus, potentially underlying the progression of chronic injury to fibrosis. In this study, we report the use of a novel TGF-β receptor antagonist to block fibrogenesis induced by ligation of the common bile duct in rats. The antagonist consisted of a chimeric IgG containing the extracellular portion of the TGF-β type II receptor. This “soluble receptor” was infused at the time of injury; in some experiments it was given at 4 days after injury, as a test of its ability to reverse fibrogenesis. The latter was assessed by expression of collagen, both as the mRNA in stellate cells isolated from control or injured liver and also by quantitative histochemistry of tissue sections. When the soluble receptor was administered at the time of injury, collagen I mRNA in stellate cells from the injured liver was 26% of that from animals receiving control IgG (P < 0.0002); when soluble receptor was given after injury induction, collagen I expression was 35% of that in control stellate cells (P < 0.0001). By quantitative histochemistry, hepatic fibrosis in treated animals was 55% of that in controls. We conclude that soluble TGF-β receptor is an effective inhibitor of experimental fibrogenesis in vivo and merits clinical evaluation as a novel agent for controlling hepatic fibrosis in chronic liver injury.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Orally administered antigens induce a state of immunologic hyporesponsiveness termed oral tolerance. Different mechanisms are involved in mediating oral tolerance depending on the dose fed. Low doses of antigen generate cytokine-secreting regulatory cells, whereas high doses induce anergy or deletion. We used mice transgenic for a T-cell receptor (TCR) derived from an encephalitogenic T-cell clone specific for the acetylated N-terminal peptide of myelin basic protein (MBP) Ac-1-11 plus I-Au to test whether a regulatory T cell could be generated from the same precursor cell as that of an encephalitogenic Th1 cell and whether the induction was dose dependent. The MBP TCR transgenic mice primarily have T cells of a precursor phenotype that produce interleukin 2 (IL-2) with little interferon gamma (IFN-gamma), IL-4, or transforming growth factor beta (TGF-beta). We fed transgenic animals a low-dose (1 mg x 5) or high-dose (25 mg x 1) regimen of mouse MBP and without further immunization spleen cells were tested for cytokine production. Low-dose feeding induced prominent secretion of IL-4, IL-10, and TGF-beta, whereas minimal secretion of these cytokines was observed with high-dose feeding. Little or no change was seen in proliferation or IL-2/IFN-gamma secretion in fed animals irrespective of the dose. To demonstrate in vivo functional activity of the cytokine-secreting cells generated by oral antigen, spleen cells from low-dose-fed animals were adoptively transferred into naive (PLJ x SJL)F1 mice that were then immunized for the development of experimental autoimmune encephalomyelitis (EAE). Marked suppression of EAE was observed when T cells were transferred from MBP-fed transgenic animals but not from animals that were not fed. In contrast to oral tolerization, s.c. immunization of transgenic animals with MBP in complete Freund's adjuvant induced IFN-gamma-secreting Th1 cells in vitro and experimental encephalomyelitis in vivo. Despite the large number of cells reactive to MBP in the transgenic animals, EAE was also suppressed by low-dose feeding of MBP prior to immunization. These results demonstrate that MBP-specific T cells can differentiate in vivo into encephalitogenic or regulatory T cells depending upon the context by which they are exposed to antigen.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The critical role of tumor necrosis factor (TNF) as a mediator in autoimmune inflammatory processes is evident from in vivo studies with TNF-blocking agents. However, the mechanisms by which TNF, and possibly also its homologue lymphotoxin alpha, contributes to development of pathology in rheumatoid arthritis and Crohn disease and in animal models like experimental autoimmune encephalomyelitis is unclear. Possibilities include regulation of vascular adhesion molecules enabling leukocyte movement into tissues or direct cytokine-mediated effector functions such as mediation of tissue damage. Here we show that administration of a TNF receptor (55 kDa)-IgG fusion protein prevented clinical signs of actively induced experimental autoimmune encephalomyelitis. Significantly, the total number of CD4+ T lymphocytes isolated from the central nervous system of clinically healthy treated versus diseased control animals was comparable. By using a CD45 congenic model of passively transferred experimental autoimmune encephalomyelitis to enable tracking of myelin basic protein-specific effector T lymphocytes, prevention of clinical signs of disease was again demonstrated in treated animals but without quantitative or qualitative impediment to the movement of autoreactive T lymphocytes to and within the central nervous system. Thus, despite the uninterrupted movement of specific T lymphocytes into the target tissue, subsequent disease development was blocked. This provides compelling evidence for a direct effector role of TNF/lymphotoxin alpha in autoimmune tissue damage.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Human ciliary neurotrophic factor (hCNTF), which promotes the cell survival and differentiation of motor and other neurons, is a protein belonging structurally to the alpha-helical cytokine family. hCNTF was subjected to three-dimensional structure modeling and site-directed mutagenesis to analyze its structure-function relationship. The replacement of Lys-155 with any other amino acid residue resulted in abolishment of neural cell survival activity, and some of the Glu-153 mutant proteins had 5- to 10-fold higher biological activity. The D1 cap region (around the boundary between the CD loop and helix D) of hCNTF, including both Glu-153 and Lys-155, was shown to play a key role in the biological activity of hCNTF as one of the putative receptor-recognition sites. In this article, the D1 cap region of the 4-helix-bundle proteins is proposed to be important in receptor recognition and biological activity common to alpha-helical cytokine proteins reactive with gp130, a component protein of the receptors.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Interleukin (IL) 2 signaling requires the dimerization of the IL-2 receptor beta (IL-2R beta) and common gamma (gamma c) chains. The gamma is also a component of the receptors for IL-4, IL-7, and IL-9. To assess the extent and role of the receptor signal transducing system utilizing the gamma c chain on human intestinal epithelial cells, the expression of gamma c, IL-2R beta, and receptor chains specific for IL-4, IL-7, and IL-9 was assessed by reverse transcription-coupled PCR on human intestinal epithelial cell lines and on isolated primary human intestinal epithelial cells. Caco-2, HT-29, and T-84 cells were found to express transcripts for the gamma c and IL-4R chains constitutively. IL-2R beta chain expression was demonstrated in Caco-2 and HT-29 but not in T-84 cells. None of the cell lines expressed mRNA for the IL-2R alpha chain. After stimulation with epidermal growth factor for 24 h Caco-2, HT-29, and T-84 cells expressed transcripts for IL-7R. In addition, Caco-2 and HT-29 cells expressed mRNA for the IL-9R. Receptors for IL-2, IL-4, IL-7, and IL-9 on intestinal epithelial cells lines appeared to be functional; stimulation with these cytokines caused rapid tyrosine phosphorylation of proteins. The relevance of the observations in intestinal epithelial cell lines for intestinal epithelial function in vivo was supported by the demonstration of transcripts for gamma c, IL-2R beta, IL-4R, IL-7R, and IL-9R in primary human intestinal epithelial cells.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

She is a widely expressed adapter protein that plays an important role in signaling via a variety of cell surface receptors and has been implicated in coupling the stimulation of growth factor, cytokine, and antigen receptors to the Ras signaling pathway. She interacts with several tyrosine-phosphorylated receptors through its C-terminal SH2 domain, and one of the mechanisms of T-cell receptor-mediated Ras activation involves the interaction of the Shc SH2 domain with the tyrosine-phosphorylated zeta chain of the T-cell receptor. Here we describe a high-resolution NMR structure of the Shc SH2 domain complexed to a phosphopeptide (GHDGLpYQGLSTATK) corresponding to a portion of the zeta chain of the T-cell receptor. Although the overall architecture of the protein is similar to other SH2 domains, distinct structural differences were observed in the smaller beta-sheet, BG loop, (pY + 3) phosphopeptide-binding site, and relative position of the bound phosphopeptide.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

CD4+ T cells from alpha beta-T-cell receptor transgenic mice were analyzed for coexpression of cytokine mRNAs during phenotype development using a double-label in situ hybridization technique. T cells that produced cytokines in the primary response were a fraction of the activated population, and only a minority of the cytokine-positive cells coexpressed two cytokines. In secondary responses, frequencies of double-positive cells increased, although they remained a minority of the total. Of the cytokine pairs examined, interleukin (IL)-4 and IL-5 were the most frequently coexpressed. IL-4 and interferon gamma showed the greatest tendency toward segregation of expression, being rarely coexpressed after the primary stimulation. These data indicate that there is significant heterogeneity of cytokine gene expression by individual CD4+ T cells during early antigenic responses. Coexpression of any pairs of cytokines, much less Th1 and Th2 cytokines, is generally the exception. The Th0 phenotype is a population phenotype rather than an individual cell phenotype.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Killer cell inhibitory receptors (KIR) protect class I HLAs expressing target cells from natural killer (NK) cell-mediated lysis. To understand the molecular basis of this receptor-ligand recognition, we have crystallized the extracellular ligand-binding domains of KIR2DL2, a member of the Ig superfamily receptors that recognize HLA-Cw1, 3, 7, and 8 allotypes. The structure was determined in two different crystal forms, an orthorhombic P212121 and a trigonal P3221 space group, to resolutions of 3.0 and 2.9 Å, respectively. The overall fold of this structure, like KIR2DL1, exhibits K-type Ig topology with cis-proline residues in both domains that define β-strand switching, which sets KIR apart from the C2-type hematopoietic growth hormone receptor fold. The hinge angle of KIR2DL2 is approximately 80°, 14° larger than that observed in KIR2DL1 despite the existence of conserved hydrophobic residues near the hinge region. There is also a 5° difference in the observed hinge angles in two crystal forms of 2DL2, suggesting that the interdomain hinge angle is not fixed. The putative ligand-binding site is formed by residues from several variable loops with charge distribution apparently complementary to that of HLA-C. The packing of the receptors in the orthorhombic crystal form offers an intriguing model for receptor aggregation on the cell surface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The receptor 2B4 belongs to the Ig superfamily and is found on the surface of all murine natural killer (NK) cells as well as T cells displaying non-MHC-restricted cytotoxicity. Previous studies have suggested that 2B4 is an activating molecule because cross-linking of this receptor results in increased cytotoxicity and γ-interferon secretion as well as granule exocytosis. However, it was recently shown that the gene for 2B4 encodes two different products that arise by alternative splicing. These gene products differ solely in their cytoplasmic domains. One form has a cytoplasmic tail of 150 amino acids (2B4L) and the other has a tail of 93 amino acids (2B4S). To determine the function of each receptor, cDNAs for 2B4S and 2B4L were transfected into the rat NK cell line RNK-16. Interestingly, the two forms of 2B4 had opposing functions. 2B4S was able to mediate redirected lysis of P815 tumor targets, suggesting that this form represents an activating receptor. However, 2B4L expression led to an inhibition of redirected lysis of P815 targets when the mAb 3.2.3 (specific for rat NKRP1) was used. In addition, 2B4L constitutively inhibits lysis of YAC-1 tumor targets. 2B4L is a tyrosine phosphoprotein, and removal of domains containing these residues abrogates its inhibitory function. Like other inhibitory receptors, 2B4L associates with the tyrosine phosphatase SHP-2. Thus, 2B4L is an inhibitory receptor belonging to the Ig superfamily.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During αβ thymocyte development, clonotype-independent CD3 complexes are expressed at the cell surface before the pre-T cell receptor (TCR). Signaling through clonotype-independent CD3 complexes is required for expression of rearranged TCRβ genes. On expression of a TCRβ polypeptide chain, the pre-TCR is assembled, and TCRβ locus allelic exclusion is established. We investigated the putative contribution of clonotype-independent CD3 complex signaling to TCRβ locus allelic exclusion in mice single-deficient or double-deficient for CD3ζ/η and/or p56lck. These mice display defects in the expression of endogenous TCRβ genes in immature thymocytes, proportional to the severity of CD3 complex malfunction. Exclusion of endogenous TCRβ VDJ (variable, diversity, joining) rearrangements by a functional TCRβ transgene was severely compromised in the single-deficient and double-deficient mutant mice. In contrast to wild-type mice, most of the CD25+ double-negative (DN) thymocytes of the mutant mice failed to express the TCRβ transgene, suggesting defective expression of the TCRβ transgene similar to endogenous TCRβ genes. In the mutant mice, a proportion of CD25+ DN thymocytes that failed to express the transgene expressed endogenous TCRβ polypeptide chains. Many double-positive cells of the mutant mice coexpressed endogenous and transgenic TCRβ chains or more than one endogenous TCRβ chain. The data suggest that signaling through clonotype-independent CD3 complexes may contribute to allelic exclusion of the TCRβ locus by inducing the expression of rearranged TCRβ genes in CD25+ DN thymocytes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interaction of the antigen-specific receptor of T lymphocytes with its antigenic ligand can lead either to cell activation or to a state of profound unresponsiveness (anergy). Although subtle changes in the nature of the ligand or of the antigen-presenting cell have been shown to affect the outcome of T cell receptor ligation, the mechanism by which the same receptor can induce alternative cellular responses is not completely understood. A model for explaining both positive (cell proliferation and cytokine production) and negative (anergy induction) signaling of T lymphocytes is described herein. This model relies on the autophosphorylative properties of the tyrosine kinases associated with the T cell receptor. One of its basic assumptions is that the kinase activity of these receptor-associated enzymes remains above background level after ligand removal and is responsible for cellular unresponsiveness. Using a simple Boolean formalism, we show how the timing of the binding and intracellular signal-transduction events can affect the properties of receptor signaling and determine the type of cellular response. The present approach integrates into a common framework a large body of experimental observations and allows specification of conditions leading to cellular activation or to anergy.