41 resultados para CpG methylation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Properties of a mutant bacteriophage T2 DNA [N6-adenine] methyltransferase (T2 Dam MTase) have been investigated for its potential utilization in RecA-assisted restriction endonuclease (RARE) cleavage. Steady-state kinetic analyses with oligonucleotide duplexes revealed that, compared to wild-type T4 Dam, both wild-type T2 Dam and mutant T2 Dam P126S had a 1.5-fold higher kcat in methylating canonical GATC sites. Additionally, T2 Dam P126S showed increased efficiencies in methylation of non-canonical GAY sites relative to the wild-type enzymes. In agreement with these steady-state kinetic data, when bacteriophage λ DNA was used as a substrate, maximal protection from restriction nuclease cleavage in vitro was achieved on the sequences GATC, GATN and GACY, while protection of GACR sequences was less efficient. Collectively, our data suggest that T2 Dam P126S can modify 28 recognition sequences. The feasibility of using the mutant enzyme in RARE cleavage with BclI and EcoRV endonucleases has been shown on phage λ DNA and with BclI and DpnII endonucleases on yeast chromosomal DNA embedded in agarose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Derivatives of the cauliflower mosaic virus 35S promoter lacking CG and CNG methylation targets were constructed and used to direct transcription of reporter gene constructs in transiently transformed protoplasts. Such methylation-target-free (MTF) promoters, although weaker than the 35S promoter, retain significant activity despite mutation of the as-1 element. The effect of methylation on gene expression in MTF- and 35S-promoter driven constructs was examined. Even when the promoter region was free of methylation targets, reporter gene expression was markedly reduced when cytosine residues in CG dinucleotides were methylated in vitro prior to transformation. Mosaic methylation experiments, in which only specific parts of the plasmids were methylated, revealed that methylation of the coding region alone has a negative effect on reporter gene expression. Methylation nearer the 5' end of the coding region was more inhibitory, consistent with inhibition of transcription elongation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arabidopsis plants transformed with an antisense construct of an Arabidopsis methyltransferase cDNA (METI) have reduced cytosine methylation in CG dinucleotides. Methylation levels in progeny of five independent transformants ranged from 10% to 100% of the wild type. Removal of the antisense construct by segregation in sexual crosses did not fully restore methylation patterns in the progeny, indicating that methylation patterns are subject to meiotic inheritance in Arabidopsis. Plants with decreased methylation displayed a number of phenotypic and developmental abnormalities, including reduced apical dominance, smaller plant size, altered leaf size and shape, decreased fertility, and altered flowering time. Floral organs showed homeotic transformations that were associated with ectopic expression of the floral homeotic genes AGAMOUS and APETALA3 in leaf tissue. These observations suggest that DNA methylation plays an important role in regulating many developmental pathways in plants and that the developmental abnormalities seen in the methyltransferase antisense plants may be due to dysregulation of gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monoallelic expression in diploid mammalian cells appears to be a widespread phenomenon, with the most studied examples being X-chromosome inactivation in eutherian female cells and genomic imprinting in the mouse and human. Silencing and methylation of certain sites on one of the two alleles in somatic cells is specific with respect to parental source for imprinted genes and random for X-linked genes. We report here evidence indicating that: (i) differential methylation patterns of imprinted genes are not simply copied from the gametes, but rather established gradually after fertilization; (ii) very similar methylation patterns are observed for diploid, tetraploid, parthenogenic, and androgenic preimplantation mouse embryos, as well as parthenogenic and androgenic mouse embryonic stem cells; (iii) haploid parthenogenic embryos do not show methylation adjustment as seen in diploid or tetraploid embryos, but rather retain the maternal pattern. These observations suggest that differential methylation in imprinted genes is achieved by a dynamic process that senses gene dosage and adjusts methylation similar to X-chromosome inactivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial infection stimulates the host to mount a rapid inflammatory response. A 6-base DNA motif consisting of an unmethylated CpG dinucleotide flanked by two 5' purines and two 3' pyrimidines was shown to contribute to this response by inducing polygonal B-cell activation. This stimulatory motif is 20 times more common in the DNA of bacteria than higher vertebrates. The current work shows that the same motif induces the rapid and coordinated secretion of interleukin (IL) 6, IL-12, and interferon gamma (but not IL-2, IL-3, IL-4, IL-5, or IL-10) in vivo and in vitro. Stimulatory CpG DNA motifs induced B, T, and natural killer cells to secrete cytokine more effectively than did lipopolysaccharide. Thus, immune recognition of bacterial DNA may contribute to the cytokine, as well as the antibody production characteristic of an innate inflammatory response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylation of cytosine residues in DNA plays an important role in regulating gene expression during vertebrate embryonic development. Conversely, disruption of normal patterns of methylation is common in tumors and occurs early in progression of some human cancers. In vertebrates, it appears that the same DNA methyltransferase maintains preexisting patterns of methylation during DNA replication and carries out de novo methylation to create new methylation patterns. There are several indications that inherent signals in DNA structure can act in vivo to initiate or block de novo methylation in adjacent DNA regions. To identify sequences capable of enhancing de novo methylation of DNA in vitro, we designed a series of oligodeoxyribonucleotide substrates with substrate cytosine residues in different sequence contexts. We obtained evidence that some 5-methylcytosine residues in these single-stranded DNAs can stimulate de novo methylation of adjacent sites by murine DNA 5-cytosine methyltransferase as effectively as 5-methylcytosine residues in double-stranded DNA stimulate maintenance methylation. This suggests that double-stranded DNA may not be the primary natural substrate for de novo methylation and that looped single-stranded structures formed during the normal course of DNA replication or repair serve as "nucleation" sites for de novo methylation of adjacent DNA regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insertion of foreign DNA into an established mammalian genome can extensively alter the patterns of cellular DNA methylation. Adenovirus type 12 (Ad12)-transformed hamster cells, Ad12-induced hamster tumor cells, or hamster cells carrying integrated DNA of bacteriophage lambda were used as model systems. DNA methylation levels were examined by cleaving cellular DNA with Hpa II, Msp I, or Hha I, followed by Southern blot hybridization with 32P-labeled, randomly selected cellular DNA probes. For several, but not all, cellular DNA segments investigated, extensive increases in DNA methylation were found in comparison with the methylation patterns in BHK21 or primary Syrian hamster cells. In eight different Ad12-induced hamster tumors, moderate increases in DNA methylation were seen. Increased methylation of cellular genes was also documented in two hamster cell lines with integrated Ad12 DNA without the Ad12-transformed phenotype, in one cloned BHK21 cell line with integrated plasmid DNA, and in at least three cloned BHK21 cell lines with integrated lambda DNA. By fluorescent in situ hybridization, the cellular hybridization probes were located to different hamster chromosomes. The endogenous intracisternal A particle genomes showed a striking distribution on many hamster chromosomes, frequently on their short arms. When BHK21 hamster cells were abortively infected with Ad12, increases in cellular DNA methylation were not seen. Thus, Ad12 early gene products were not directly involved in increasing cellular DNA methylation. We attribute the alterations in cellular DNA methylation, at least in part, to the insertion of foreign DNA. Can alterations in the methylation profiles of hamster cellular DNA contribute to the generation of the oncogenic phenotype?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inordinate expansion and hypermethylation of the fragile X DNA triplet repeat, (GGC)n.(GCC)n, are correlated with the ability of the individual G- and C-rich single strands to form hairpin structures. Two-dimensional NMR and gel electrophoresis studies show that both the G- and C-rich single strands form hairpins under physiological conditions. This propensity of hairpin formation is more pronounced for the C-rich strand than for the G-rich strand. This observation suggests that the C-rich strand is more likely to form hairpin or "slippage" structure and show asymmetric strand expansion during replication. NMR data also show that the hairpins formed by the C-rich strands fold in such a way that the cytosine at the CpG step of the stem is C.C paired. The presence of a C.C mismatch at the CpG site generates local flexibility, thereby providing analogs of the transition to the methyltransferase. In other words, the hairpins of the C-rich strand act as better substrates for the human methyltransferase than the Watson-Crick duplex or the G-rich strand. Therefore, hairpin formation could account for the specific methylation of the CpG island in the fragile X repeat that occurs during inactivation of the FMR1 gene during the onset of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a procedure for preferential isolation of DNA fragments with G+C-rich portions. Such fragments occur in known genes within or adjacent to CpG islands. Since about 56% of human genes are associated with CpG islands, isolation of these fragments permits detection and probing of many genes within much larger segments of DNA, such as cosmids or yeast artificial chromosomes, which have not been sequenced. Cloned DNA fragments digested with four restriction endonucleases were subjected to denaturing gradient gel electrophoresis. Long G+C-rich sections in fragments inhibit strand dissociation after the fragments reach retardation level in the gradient; such fragments are retained in the gel after most others disappear. Nucleotide sequences of the retained fragments show that about half of these fragments appear to be derived from CpG islands. Northern analysis indicated the presence of RNA complementary to most of the retained fragments. A heuristic approach to the relation between base sequence and the kinetics of strand dissociation of partly melted molecules appears to account for retention and nonretention. The expectation that CpG island fragments will be enriched among fragments retained in a denaturing gradient is supported by rate estimates based on melting theory applied to known sequences. This method, designated SPM for segregation of partly melted molecules, is expected to provide a means for convenient and efficient isolation of genes from unsequenced DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During early mammalian embryogenesis, one of the two X chromosomes in somatic cells of the female becomes inactivated through a process that is thought to depend on a unique initiator region, the X-chromosome inactivation center (Xic). The recently characterized Xist sequence (X-inactive-specific transcript) is thought to be a possible candidate for Xic. In mice a further genetic element, the X chromosome-controlling element (Xce), is also known to influence the choice of which of the two X chromosomes is inactivated. We report that a region of the mouse X chromosome lying 15 kb distal to Xist contains several sites that show hypermethylation specifically associated with the active X chromosome. Analysis of this region in various Xce strains has revealed a correlation between the strength of the Xce allele carried and the methylation status of this region. We propose that such a region could be involved in the initial stages of the inactivation process and in particular in the choice of which of the two X chromosomes present in a female cell will be inactivated.