85 resultados para Common Beta-subunit


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Activation of prolactin (PRL)-dependent signaling occurs as the result of ligand-induced dimerization of receptor (PRLr). Although three PRLr isoforms (short, intermediate, and long) have been characterized and are variably coexpressed in PRL-responsive tissues, the functional effects of ligand-induced PRLr isoform heterodimerization have not been examined. To determine whether heterodimeric PRLr complexes were capable of ligand-induced signaling and cellular proliferation, chimeras consisting of the extracellular domain of either the alpha or beta subunit of human granulocyte-macrophage colony-stimulating factor receptor (GM-CSFr) and the intracellular domain of the rat intermediate or short PRLr isoforms (PRLr-I or PRLr-S) were synthesized. Because high affinity binding of GM-CSF is mediated by the extracellular domain of one alpha and beta GM-CSFr pair, use of GM-CSFr/PRLr chimera specifically directed the dimerization of the PRLr intracellular domains within ligand-receptor complexes. Stable transfection of these constructs into the Ba/F3 line was demonstrated by Northern blot and immunoprecipitation analyses. Flow cytometry revealed specific binding of a phycoerythrin-conjugated human GM-CSF to the transfectants, confirming cell surface expression of the chimeric receptors. When tested for their ability to proliferate in response to GM-CSF, only chimeric transfectants expressing GM-CSFr/PRLr-I homodimers demonstrated significant [3H]thymidine incorporation. GM-CSF stimulation of transfectants expressing either GM-CSFr/PRLr-S homodimers or GM-CSFr/PRLr-S+1 heterodimers failed to induce proliferation. Consistent with these data, the GM-CSF-induced activation of two phosphotyrosine kinases, Jak2 and Fyn, was observed only in homodimeric GM-CSFr/PRLr-I transfectants. These results show that the PRLr-S functions as a dominant negative isoform, down-regulating both signaling and proliferation mediated by the receptor complex. Thus, structural motifs necessary for Jak2 and Fyn activation within the carboxy terminus of the PRLr-I, absent in the PRLr-S, are required in each member of the dimeric PRLr complex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The 4.6-kb region 5'-upstream from the gene encoding a cobalt-containing and amide-induced high molecular mass-nitrile hydratase (H-NHase) from Rhodococcus rhodochrous J1 was found to be required for the expression of the H-NHase gene with a host-vector system in a Rhodococcus strain. Sequence analysis has revealed that there are at least five open reading frames (H-ORF1 approximately 5) in addition to H-NHase alpha- and beta-subunit genes. Deletion of H-ORF1 and H-ORF2 resulted in decrease of NHase activity, suggesting a positive regulatory role of both ORFs in the expression of the H-NHase gene. H-ORF1 showed significant similarity to a regulatory protein, AmiC, which is involved in regulation of amidase expression by binding an inducer amide in Pseudomonas aeruginosa. H-ORF4, which has been found to be uninvolved in regulation of H-NHase expression by enzyme assay for its deletion transformant and Northern blot analysis for R. rhodochrous J1, showed high similarity to transposases from insertion sequences of several bacteria. Determination of H-NHase activity and H-NHase mRNA levels in R. rhodochrous J1 has indicated that the expression of the H-NHase gene is regulated by an amide at the transcriptional level. These findings suggest the participation of H-ORF4 (IS1164) in the organization of the H-NHase gene cluster and the involvement of H-ORF1 in unusual induction mechanism, in which H-NHase is formed by amides (the products in the NHase reaction), but not by nitriles (the substrates).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By using a crosslinkable probe incorporated into the 3' terminus of nascent transcript, three sites were mapped in Escherichia coli RNA polymerase that are contacted by the RNA in the productive elongation complex. Two of these sites are in the beta subunit and one is in the beta' subunit. During elongation, the transcription complex occasionally undergoes an arrest whereby it can neither extend nor release the RNA transcript. It is demonstrated that in an arrested complex, the three contacts of RNA 3' terminus are lost, while a new beta' subunit contact becomes prominent. Thus, elongation arrest appears to involve the disengagement of the bulk of the active center from the 3' terminus of RNA and the transfer of the terminus into a new protein environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human granulocyte-macrophage colony-stimulating factor (GM-CSF) binds to a high-affinity heterodimeric receptor composed of a specific alpha chain and a common beta chain (beta(c)), which is shared with the receptors for interleukins 3 and 5. Hemopoietic cell survival requires GM-CSF binding this high-affinity receptor. We have recently developed the GM-CSF mutant E21R, which selectively binds to the alpha chain and behaves as a competitive GM-CSF antagonist. We have now examined the role of E21R on the survival of hemopoietic cells and found that E21R causes apoptosis (programmed cell death) of normal and malignant cells directly in the absence of GM-CSF. The direct apoptotic effect of E21R occurred in a dose- and time-dependent manner. Apoptosis by E21R was dependent on cells expressing the high-affinity GM-CSF receptor and could be blocked by GM-CSF. Significantly, apoptosis of the cells occurred even in the presence of the survival factors granulocyte CSF and stem cell factor but was prevented by engagement of beta(c) with interleukin 3. The initiation of apoptosis required phosphorylation, transcriptional activity, and protein synthesis. These findings support a model whereby binding of E21R to the alpha chain leads to apoptosis, while beta(c) plays an important role in cell survival. This model may be applicable to other multimeric cytokine receptors and offers a novel approach for the treatment of human leukemia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We reported previously that the human T-cell lymphotrophic virus type I (HTLV-I)-associated adult T-cell leukemia line HuT-102 produces a cytokine designated interleukin (IL) T that requires interleukin (IL) 2 receptor beta-subunit expression for its action. Using anti-cytokine antibodies, we demonstrated that IL-T is identical to the simultaneously described IL-15. When compared to activated monocytes, IL-15 mRNA expression was 6- to 10-fold greater in HuT-102 cells. The predominant IL-15 message from HuT-102 is a chimeric mRNA joining a segment of the R region of the long terminal repeat of HTLV-I and the 5'-untranslated region (UTR) of IL-15. Normally, by alternative splicing, this 118-nucleotide R element represents the most 5' region of several HTLV-I transcripts including tax, rex, and env. The introduction of the R element eliminated over 200 nucleotides of the IL-15 5'-UTR, including 8 of 10 upstream AUGs that are present in normal IL-15 messages. On analysis of the 5'-UTR of normal IL-15, we demonstrated that the presence of these 10 upstream AUGs interferes with IL-15 mRNA translation. Thus, IL-15 synthesis by the adult T-cell leukemia line HuT- 102 involves an increase in IL-15 mRNA transcription and translation secondary to the production of an HTLV-I R element fusion message that lacks many upstream AUGs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The modulation of a family of cloned neuronal calcium channels by stimulation of a coexpressed mu opioid receptor was studied by transient expression in Xenopus oocytes. Activation of the morphine receptor with the synthetic enkephalin [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO) resulted in a rapid inhibition of alpha1A (by approximately 20%) and alpha1B (by approximately 55%) currents while alpha1C and alpha1E currents were not significantly affected. The opioid-induced effects on alpha1A and alpha1B currents were blocked by pertussis toxin and the GTP analogue guanosine 5'-[beta-thio]diphosphate. Similar to modulation of native calcium currents, DAMGO induced a slowing of the activation kinetics and exhibited a voltage-dependent inhibition that was partially relieved by application of strong depolarizing pulses. alpha1A currents were still inhibited in the absence of coexpressed Ca channel alpha2 and beta subunits, suggesting that the response is mediated by the alpha1 subunit. Furthermore, the sensitivity of alpha1A currents to DAMGO-induced inhibition was increased approximately 3-fold in the absence of a beta subunit. Overall, the results show that the alpha1A (P/Q type) and the alpha1B (N type) calcium channels are selectively modulated by a GTP-binding protein (G protein). The results raise the possibility of competitive interactions between beta subunit and G protein binding to the alpha1 subunit, shifting gating in opposite directions. At presynaptic terminals, the G protein-dependent inhibition may result in decreased synaptic transmission and play a key role in the analgesic effect of opioids and morphine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During oxidative and photo-phosphorylation, F0F1-ATP synthases couple the movement of protons down an electrochemical gradient to the synthesis of ATP. One proposed mechanistic feature that has remained speculative is that this coupling process requires the rotation of subunits within F0F1. Guided by a recent, high-resolution structure for bovine F1 [Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. (1994) Nature (London) 370, 621-628], we have developed a critical test for rotation of the central gamma subunit relative to the three catalytic beta subunits in soluble F1 from Escherichia coli. In the bovine F1 structure, a specific point of contact between the gamma subunit and one of the three catalytic beta subunits includes positioning of the homolog of E. coli gamma-subunit C87 (gamma C87) close to the beta-subunit 380DELSEED386 sequence. A beta D380C mutation allowed us to induce formation of a specific disulfide bond between beta and gamma C87 in soluble E. coli F1. Formation of the crosslink inactivated beta D380C-F1, and reduction restored full activity. Using a dissociation/reassembly approach with crosslinked beta D380C-F1, we incorporated radiolabeled beta subunits into the two noncrosslinked beta-subunit positions of F1. After reduction of the initial nonradioactive beta-gamma crosslink, only exposure to conditions for catalytic turnover results in similar reactivities of unlabeled and radiolabeled beta subunits with gamma C87 upon reoxidation. The results demonstrate that gamma subunit rotates relative to the beta subunits during catalysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. Here we report the derivation of a cloned cell line (R278.5) from a rhesus monkey blastocyst that remains undifferentiated in continuous passage for > 1 year, maintains a normal XY karyotype, and expresses the cell surface markers (alkaline phosphatase, stage-specific embryonic antigen 3, stage-specific embryonic antigen 4, TRA-1-60, and TRA-1-81) that are characteristic of human embryonal carcinoma cells. R278.5 cells remain undifferentiated when grown on mouse embryonic fibroblast feeder layers but differentiate or die in the absence of fibroblasts, despite the presence of recombinant human leukemia inhibitory factor. R278.5 cells allowed to differentiate in vitro secrete bioactive chorionic gonadotropin into the medium, express chorionic gonadotropin alpha- and beta-subunit mRNAs, and express alpha-fetoprotein mRNA, indicating trophoblast and endoderm differentiation. When injected into severe combined immunodeficient mice, R278.5 cells consistently differentiate into derivatives of all three embryonic germ layers. These results define R278.5 cells as an embryonic stem cell line, to our knowledge, the first to be derived from any primate species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe the full-length (72 kDa) myotonin protein kinase (Mt-PK) and demonstrate its kinase activity. The 72-kDa protein corresponds to the translation product from the first in-frame AUG codon. This protein was found in the cytoplasmic fraction, whereas the previously reported 55-kDa protein was observed in nuclear extracts. Only the 72-kDa protein was phosphorylated by [32P]phosphate in normal human fibroblasts. To investigate the putative kinase activity of Mt-PK, a construct containing the full-length open reading frame of Mt-PK was expressed in bacterial cells. The recombinant Mt-PK autophosphorylates a Ser residue and phosphorylates the synthetic peptide Gly-Arg-Gly-Leu-Ser-Leu-Ser-Arg, which contains a Ser residue in the phosphorylation site. We examined phosphorylation of the voltage-dependent Ca(2+)-release channel, or dihydropyridine receptor (DHPR), by recombinant Mt-PK. We observed that the beta subunit of DHPR was phosphorylated in vitro by Mt-PK. A beta-subunit DHPR peptide containing some of the Ser residues predicted to be phosphorylated was synthesized and found to be a substrate for Mt-PK in vitro. We conclude that the 72-kDa Mt-PK has a protein kinase activity specific for Ser residues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the functional consequences of a mutation in the epithelial Na+ channel that causes a heritable form of salt-sensitive hypertension, Liddle disease. This mutation, identified in the original kindred described by Liddle, introduces a premature stop codon in the channel beta subunit, resulting in a deletion of almost all of the C terminus of the encoded protein. Coexpression of the mutant beta subunit with wild-type alpha and gamma subunits in Xenopus laevis oocytes resulted in an approximately 3-fold increase in the macroscopic amiloride-sensitive Na+ current (INa) compared with the wild-type channel. This change in INa reflected an increase in the overall channel activity characterized by a higher number of active channels in membrane patches. The truncation mutation in the beta subunit of epithelial Na+ channel did not alter the biophysical and pharmacological properties of the channel--including unitary conductance, ion selectivity, or sensitivity to amiloride block. These results provide direct physiological evidence that Liddle disease is related to constitutive channel hyperactivity in the cell membrane. Deletions of the C-terminal end of the beta and gamma subunits of rat epithelial Na+ channel were functionally equivalent in increasing INa, suggesting that the cytoplasmic domain of the gamma subunit might be another molecular target for mutations responsible for salt-sensitive forms of hypertension.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The specific signal transduction function of the gamma c subunit in the interleukin (IL) 2, IL-4, IL-7, IL-9, and IL-15 receptor complexes remains undefined. The present structure-function analyses demonstrated that the entire cytoplasmic tail of gamma c could be functionally replaced in the IL-2 receptor (IL-2R) signaling complex by a severely truncated erythropoietin receptor cytoplasmic domain lacking tyrosine residues. Heterodimerization of IL-2R beta with either gamma c or the truncated erythropoietin receptor chain led to an array of specific signals normally derived from the native IL-2R despite the substitution of Janus kinase JAK2 for JAK3 in the receptor complex. These findings thus suggest a model in which the gamma c subunit serves as a common and generic "trigger" chain by providing a nonspecific Janus kinase for signaling program initiation, while signal specificity is determined by the unique "driver" subunit in each of the gamma c- containing receptor complexes. Furthermore, these results may have important functional implications for the asymmetric design of many cytokine receptor complexes and the evolutionary design of receptor subfamilies that share common trigger or driver subunits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Escherichia coli RNA polymerase (RNAP) alpha subunit serves as the initiator for RNAP assembly, which proceeds according to the pathway 2 alpha-->alpha 2-->alpha 2 beta-->alpha 2 beta beta'-->alpha 2 beta beta' sigma. In this work, we have used hydroxyl-radical protein footprinting to define determinants of alpha for interaction with beta, beta', and sigma. Our results indicate that amino acids 30-75 of alpha are protected from hydroxyl-radical-mediated proteolysis upon interaction with beta (i.e., in alpha 2 beta, alpha 2 beta beta', and alpha 2 beta beta' sigma), and amino acids 175-210 of alpha are protected from hydroxyl-radical-mediated proteolysis upon interaction with beta' (i.e., in alpha 2 beta beta' and alpha 2 beta beta' sigma). The protected regions are conserved in the alpha homologs of prokaryotic, eukaryotic, archaeal, and chloroplast RNAPs and contain sites of substitutions that affect RNAP assembly. We conclude that the protected regions define determinants of alpha for direct functional interaction with beta and beta'. The observed maximal magnitude of protection upon interaction with beta and the observed maximal magnitude of protection upon interaction with beta' both correspond to the expected value for complete protection of one of the two alpha protomers of RNAP (i.e., 50% protection). We propose that only one of the two alpha protomers of RNAP interacts with beta and that only one of the two alpha protomers of RNAP interacts with beta'.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The RII beta regulatory subunit of cAMP-dependent protein kinase (PKA) contains an autophosphorylation site and a nuclear location signal, KKRK. We approached the structure-function analysis of RII beta by using site-directed mutagenesis. Ser114 (the autophosphorylation site) of human RII beta was replaced with Ala (RII beta-P) or Arg264 of KKRK was replaced with Met (RII beta-K). ras-transformed NIH 3T3 (DT) cells were transfected with expression vectors for RII beta, RII beta-P, and RII beta-K, and the effects on PKA isozyme distribution and transformation properties were analyzed. DT cells contained PKA-I and PKA-II isozymes in a 1:2 ratio. Over-expression of wild-type or mutant RII beta resulted in an increase in PKA-II and the elimination of PKA-I. Only wild-type RII beta cells demonstrated inhibition of both anchorage-dependent and -independent growth and phenotypic change. The growth inhibitory effect of RII beta overexpression was not due to suppression of ras expression but was correlated with nuclear accumulation of RII beta. DT cells demonstrated growth inhibition and phenotypic change upon treatment with 8-Cl-cAMP. RII beta-P or RII beta-K cells failed to respond to 8-Cl-cAMP. These data suggest that autophosphorylation and nuclear location signal sequences are integral parts of the growth regulatory mechanism of RII beta.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Brefeldin A, a fungal metabolite that inhibits membrane transport, induces the mono(ADP-ribosyl)ation of two cytosolic proteins of 38 and 50 kDa as judged by SDS/PAGE. The 38-kDa substrate has been previously identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We report that the 50-kDa BFA-induced ADP-ribosylated substrate (BARS-50) has native forms of 170 and 130 kDa, as determined by gel filtration of rat brain cytosol, indicating that BARS-50 might exist as a multimeric complex. BARS-50 can bind GTP, as indicated by blot-overlay studies with [alpha-32P]GTP and by photoaffinity labeling with guanosine 5'-[gamma-32P] [beta,gamma-(4-azidoanilido)]triphosphate. Moreover, ADP-ribosylation of BARS-50 was completely inhibited by the beta gamma subunit complex of G proteins, while the ADP-ribosylation of GAPDH was unmodified, indicating that this effect was due to an interaction of the beta gamma complex with BARS-50, rather than with the ADP-ribosylating enzyme. Two-dimensional gel electrophoresis and immunoblot analysis shows that BARS-50 is a group of closely related proteins that appear to be different from all the known GTP-binding proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rer1p, a Golgi membrane protein, is required for the correct localization of an endoplasmic reticulum (ER) membrane protein, Sec12p, by a retrieval mechanism from the cis-Golgi to the ER. To test whether or not the role of Rer1p is common to multiple ER membrane proteins, we examined the localization of two other ER membrane proteins, Sec71p and Sec63p, in the wild-type and rer1 mutant yeast cells, using their fusions with an α-mating factor precursor (Mfα1p). Although Sec71p and Sec63p have completely different topology from Sec12p, their Mfα1p fusion proteins were also mislocalized to the trans-Golgi in the rer1 mutant. Overexpression of these fusions caused their mislocalization to the trans-Golgi even in the wild-type cells, and this mislocalization was partially suppressed by the co-overexpression of Rer1p. Either Sec71p or an artificial chimeric protein whose ER localization depends on Rer1p gave a competitive effect on the localization of the Mfα1-Sec71p fusion, which was abolished in rer1. Thus, Rer1p appears to be one of the common limiting components in the retrieval machinery for ER membrane proteins. The results also suggest that Sec71p and Sec63p depend on ER-Golgi recycling, at least partly, for ER localization. We also examined the effect of a mutation in α-COP, a subunit of yeast coatomer, on the localization of these ER membrane proteins. The Mfα1p fusions of Sec12p, Sec71p, and Sec63p were all more or less mislocalized in ret1–1. These observations imply that the roles of Rer1p and coatomer are much more general than thought before.