48 resultados para Cerebral haemorrhage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies of cortical retinotopy focused on influences from the contralateral visual field, because ascending inputs to cortex are known to be crossed. Here, functional magnetic resonance imaging was used to demonstrate and analyze an ipsilateral representation in human visual cortex. Moving stimuli, in a range of ipsilateral visual field locations, revealed activity: (i) along the vertical meridian in retinotopic (presumably lower-tier) areas; and (ii) in two large branches anterior to that, in presumptive higher-tier areas. One branch shares the anterior vertical meridian representation in human V3A, extending superiorly toward parietal cortex. The second branch runs antero-posteriorly along lateral visual cortex, overlying motion-selective area MT. Ipsilateral stimuli sparing the region around the vertical meridian representation also produced signal reductions (perhaps reflecting neural inhibition) in areas showing contralaterally driven retinotopy. Systematic sampling across a range of ipsilateral visual field extents revealed significant increases in ipsilateral activation in V3A and V4v, compared with immediately posterior areas V3 and VP. Finally, comparisons between ipsilateral stimuli of different types but equal retinotopic extent showed clear stimulus specificity, consistent with earlier suggestions of a functional segregation of motion vs. form processing in parietal vs. temporal cortex, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral organization during sentence processing in English and in American Sign Language (ASL) was characterized by employing functional magnetic resonance imaging (fMRI) at 4 T. Effects of deafness, age of language acquisition, and bilingualism were assessed by comparing results from (i) normally hearing, monolingual, native speakers of English, (ii) congenitally, genetically deaf, native signers of ASL who learned English late and through the visual modality, and (iii) normally hearing bilinguals who were native signers of ASL and speakers of English. All groups, hearing and deaf, processing their native language, English or ASL, displayed strong and repeated activation within classical language areas of the left hemisphere. Deaf subjects reading English did not display activation in these regions. These results suggest that the early acquisition of a natural language is important in the expression of the strong bias for these areas to mediate language, independently of the form of the language. In addition, native signers, hearing and deaf, displayed extensive activation of homologous areas within the right hemisphere, indicating that the specific processing requirements of the language also in part determine the organization of the language systems of the brain.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional brain mapping based on changes in local cerebral blood flow (lCBF) or glucose utilization (lCMRglc) induced by functional activation is generally carried out in animals under anesthesia, usually α-chloralose because of its lesser effects on cardiovascular, respiratory, and reflex functions. Results of studies on the role of nitric oxide (NO) in the mechanism of functional activation of lCBF have differed in unanesthetized and anesthetized animals. NO synthase inhibition markedly attenuates or eliminates the lCBF responses in anesthetized animals but not in unanesthetized animals. The present study examines in conscious rats and rats anesthetized with α-chloralose the effects of vibrissal stimulation on lCMRglc and lCBF in the whisker-to-barrel cortex pathway and on the effects of NO synthase inhibition with NG-nitro-l-arginine methyl ester (l-NAME) on the magnitude of the responses. Anesthesia markedly reduced the lCBF and lCMRglc responses in the ventral posteromedial thalamic nucleus and barrel cortex but not in the spinal and principal trigeminal nuclei. l-NAME did not alter the lCBF responses in any of the structures of the pathway in the unanesthetized rats and also not in the trigeminal nuclei of the anesthetized rats. In the thalamus and sensory cortex of the anesthetized rats, where the lCBF responses to stimulation had already been drastically diminished by the anesthesia, l-NAME treatment resulted in loss of statistically significant activation of lCBF by vibrissal stimulation. These results indicate that NO does not mediate functional activation of lCBF under physiological conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ischaemic cerebral accidents are frequent following extracorporeal membrane oxygenation (ECMO), especially after fixing the reinjection cannula in the right primitive carotid artery, which leads to an interruption in downstream flow. We describe a rare and unusual symptom of cerebral ischaemic accident that is known as Capgras syndrome. This feature is interesting because it may be documented by computed tomography (CT) scan and particular electroencephalography signals. It appears that our observation represents the first documented case of Capgras syndrome complicating ECMO. This incident emphasizes the potential hazards associated with right common artery ligature for venoarterial extracorporeal membrane oxygenation (VAECMO). In addition, it shows that this psychiatric symptom (that has been interpreted psychodynamically for many years) can have an organic basis, which should be studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Auditory cortical receptive field plasticity produced during behavioral learning may be considered to constitute "physiological memory" because it has major characteristics of behavioral memory: associativity, specificity, rapid acquisition, and long-term retention. To investigate basal forebrain mechanisms in receptive field plasticity, we paired a tone with stimulation of the nucleus basalis, the main subcortical source of cortical acetylcholine, in the adult guinea pig. Nucleus basalis stimulation produced electroencephalogram desynchronization that was blocked by systemic and cortical atropine. Paired tone/nucleus basalis stimulation, but not unpaired stimulation, induced receptive field plasticity similar to that produced by behavioral learning. Thus paired activation of the nucleus basalis is sufficient to induce receptive field plasticity, possibly via cholinergic actions in the cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alpha subunit of type II calcium/calmodulin-dependent protein kinase (CAM II kinase-alpha) plays an important role in longterm synaptic plasticity. We applied preembedding immunocytochemistry (for CAM II kinase-alpha) and postembedding immunogold labeling [for glutamate or gamma-aminobutyric acid (GABA)] to explore the subcellular relationships between transmitter-defined axon terminals and the kinase at excitatory and inhibitory synapses in thalamus and cerebral cortex. Many (but not all) axon terminals ending in asymmetric synapses contained presynaptic CAM II kinase-alpha immunoreactivity; GABAergic terminals ending in symmetric synapses did not. Postsynaptically, CAM II kinase-alpha immunoreactivity was associated with postsynaptic densities of many (but not all) glutamatergic axon terminals ending on excitatory neurons. CAM II kinase-alpha immunoreactivity was absent at postsynaptic densities of all GABAergic synapses. The findings show that CAM II kinase-alpha is selectively expressed in subpopulations of excitatory neurons and, to our knowledge, demonstrate for the first time that it is only associated with glutamatergic terminals pre- and postsynaptically. CAM II kinase-alpha is unlikely to play a role in plasticity at GABAergic synapses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postnatal development and adult function of the central nervous system are dependent on the capacity of neurons to effect long-term changes of specific properties in response to neural activity. This neuronal response has been demonstrated to be tightly correlated with the expression of a set of regulatory genes which include transcription factors as well as molecules that can directly modify cellular signaling. It is hypothesized that these proteins play a role in activity-dependent response. Previously, we described the expression and regulation in brain of an inducible form of prostaglandin synthase/cyclooxygenase, termed COX-2. COX-2 is a rate-limiting enzyme in prostanoid synthesis and its expression is rapidly regulated in developing and adult forebrain by physiological synaptic activity. Here we demonstrate that COX-2 immunoreactivity is selectively expressed in a subpopulation of excitatory neurons in neo-and allocortices, hippocampus, and amygdala and is compartmentalized to dendritic arborizations. Moreover, COX-2 immunoreactivity is present in dendritic spines, which are specialized structures involved in synaptic signaling. The developmental profile of COX-2 expression in dendrites follows well known histogenetic gradients and coincides with the critical period for activity-dependent synaptic remodeling. These results suggest that COX-2, and its diffusible prostanoid products, may play a role in postsynaptic signaling of excitatory neurons in cortex and associated structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (fMRI) was used to identify and map the representation of the visual field in seven areas of human cerebral cortex and to identify at least two additional visually responsive regions. The cortical locations of neurons responding to stimulation along the vertical or horizontal visual field meridia were charted on three-dimensional models of the cortex and on unfolded maps of the cortical surface. These maps were used to identify the borders among areas that would be topographically homologous to areas V1, V2, V3, VP, and parts of V3A and V4 of the macaque monkey. Visually responsive areas homologous to the middle temporal/medial superior temporal area complex and unidentified parietal visual areas were also observed. The topography of the visual areas identified thus far is consistent with the organization in macaque monkeys. However, these and other findings suggest that human and simian cortical organization may begin to differ in extrastriate cortex at, or beyond, V3A and V4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activity-dependent plasticity is thought to underlie both formation of appropriate synaptic connections during development and reorganization of adult cortical topography. We have recently cloned many candidate plasticity-related genes (CPGs) induced by glutamate-receptor activation in the hippocampus. Screening the CPG pool for genes that may contribute to neocortical plasticity resulted in the identification of six genes that are induced in adult visual cortical areas in response to light. These genes are also naturally induced during postnatal cortical development. CPG induction by visual stimulation occurs primarily in neurons located in cortical layers II-III and VI and persists for at least 48 hr. Four of the visually responsive CPGs (cpg2, cpg15, cpg22, cpg29) are previously unreported genes, one of which (cpg2) predicts a "mini-dystrophin-like" structural protein. These results lend molecular genetic support to physiological and anatomical studies showing activity-dependent structural reorganization in adult cortex. In addition, these results provide candidate genes the function of which may underlie mechanisms of adult cortical reorganization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deposition of PrP amyloid in cerebral vessels in conjunction with neurofibrillary lesions is the neuropathologic hallmark of the dementia associated with a stop mutation at codon 145 of PRNP, the gene encoding the prion protein (PrP). In this disorder, the vascular amyloid in tissue sections and the approximately 7.5-kDa fragment extracted from amyloid are labeled by antibodies to epitopes located in the PrP sequence including amino acids 90-147. Amyloid-laden vessels are also labeled by antibodies against the C terminus, suggesting that PrP from the normal allele is involved in the pathologic process. Abundant neurofibrillary lesions are present in the cerebral gray matter. They are composed of paired helical filaments, are labeled with antibodies that recognize multiple phosphorylation sites in tau protein, and are similar to those observed in Alzheimer disease. A PrP cerebral amyloid angiopathy has not been reported in diseases caused by PRNP mutations or in human transmissible spongiform encephalopathies; we propose to name this phenotype PrP cerebral amyloid angiopathy (PrP-CAA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prognosis for patients with the high-grade cerebral glioma glioblastoma multiforme is poor. The median survival for primary tumors is < 12 months, with most recurring at the site of the original tumor, indicating that a more aggressive local therapy is required to eradicate the unresectable "nests" of tumor cells invading into adjacent brain. Two adjuvant therapies with the potential to destroy these cells are porphyrin-sensitized photodynamic therapy (PDT) and boron-sensitized boron neutron capture therapy (BNCT). The ability of a boronated porphyrin, 2,4-(alpha, beta-dihydroxyethyl) deuteroporphyrin IX tetrakiscarborane carboxylate ester (BOPP), to act as a photosensitizing agent was investigated in vitro with the C6 rat glioma cell line and in vivo with C6 cells grown as an intracerebral tumor after implantation into Wistar rats. These studies determined the doses of BOPP and light required to achieve maximal cell kill in vitro and selective tumor kill in vivo. The data show that BOPP is more dose effective in vivo by a factor of 10 than the current clinically used photosensitizer hematoporphyrin derivative and suggest that BOPP may have potential as a dual PDT/BNCT sensitizer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed the developmental pattern of beta-galactosidase (beta-gal) expression in the cerebral cortex of the beta 2nZ3'1 transgenic mouse line, which was generated using regulatory elements of the beta 2-microglobulin gene and shows ectopic expression in nervous tissue. From embryonic day 10 onward, beta-gal was expressed in the medial and dorsal cortices, including the hippocampal region, whereas lateral cortical areas were devoid of labeling. During the period of cortical neurogenesis (embryonic days 11-17), beta-gal was expressed by selective precursors in the proliferative ventricular zone of the neocortex and hippocampus, as well as by a number of migrating and postmigratory neurons arranged into narrow radial stripes above the labeled progenitors. Thus, the transgene labels a subset of cortical progenitors and their progeny. Postnatally, radial clusters of beta-gal-positive neurons were discernible until postpartum day 10. At this age, the clusters were 250 to 500 microns wide, composed of neurons spanning all the cortical layers and exhibiting several neuronal phenotypes. These data suggest molecular heterogeneity of cortical progenitors and of the cohorts of postmitotic neurons originating from them, which implies intrinsic molecular mosaicism in both cortical progenitors and developing neurons. Furthermore, the data show that neurons committed to the expression of the transgene migrate along very narrow, radial stripes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relative cerebral glucose metabolism was examined with positron-emission tomography (PET) as a measure of neuronal activation during performance of the classically conditioned eyeblink response in 12 young adult subjects. Each subject received three sessions: (i) a control session with PET scan in which unpaired presentations of the tone conditioned stimulus and corneal airpuff unconditioned stimulus were administered, (ii) a paired training session to allow associative learning to occur, and (iii) a paired test session with PET scan. Brain regions exhibiting learning-related activation were identified as those areas that showed significant differences in glucose metabolism between the unpaired control condition and well-trained state in the 9 subjects who met the learning criterion. Areas showing significant activation included bilateral sites in the inferior cerebellar cortex/deep nuclei, anterior cerebellar vermis, contralateral cerebellar cortex and pontine tegmentum, ipsilateral inferior thalamus/red nucleus, ipsilateral hippocampal formation, ipsilateral lateral temporal cortex, and bilateral ventral striatum. Among all subjects, including those who did not meet the learning criterion, metabolic changes in ipsilateral cerebellar nuclei, bilateral cerebellar cortex, anterior vermis, contralateral pontine tegmentum, ipsilateral hippocampal formation, and bilateral striatum correlated with degree of learning. The localization to cerebellum and its associated brainstem circuitry is consistent with neurobiological studies in the rabbit model of eyeblink classical conditioning and neuropsychological studies in brain-damaged humans. In addition, these data support a role for the hippocampus in conditioning and suggest that the ventral striatum may also be involved.